

Table of Contents
Title Page

Copyright

Publisher's Note

Dedication

Acknowledgments

About the Authors

About the Contributing Authors

Introduction
Who Should Read This Book
What Is Covered in This Book
How to Contact the Author

Part I: Administering Service Delivery

Chapter 1: Using PowerShell with Active Directory
Understand the Basics of PowerShell

Understand How PowerShell and Active
Directory Work Together

Chapter 2: Managing Domains and Forests
Manage AD Domains
Manage Active Directory Trusts

Chapter 3: Managing Sites and Replication
Manage the Site Topology
Manage Replication

Chapter 4: Managing Domain Controllers
Manage How the Active Directory Service Is
Provided
Manage Server-Specific Settings

Part II: Managing Active Directory Data

Chapter 5: Configuring Active Directory
Dependencies

Configure DNS
Manage Domain Time

Chapter 6: Administering User and Group

Accounts
Manage User Accounts
Manage Groups

Chapter 7: Managing Computer Accounts, Objects,
and Organizational Units

Manage Objects
Manage Computer Accounts
Manage Organizational Units

Chapter 8: Managing Group Policies
Manage Group Policy Settings
Manage Group Policy Application

Part III: Protecting Your Investment in
Active Directory

Chapter 9: Automating Active Directory Security
Secure the Forest
Manage BitLocker

Chapter 10: Backing Up Data and Recovering from
Disasters

Back Up Active Directory Data
Restore Data

Chapter 11: Monitoring Health and Performance
Keep Active Directory Healthy
Track Domain Controller Performance

Index

Acquisitions Editor: Agatha Kim
Development Editor: Kim Beaudet

Technical Editor: Steve Patrick
Production Editor: Dassi Zeidel

Copy Editor: Tiffany Taylor
Editorial Manager: Pete Gaughan
Production Manager: Tim Tate

Vice President and Executive Group Publisher: Richard Swadley
Vice President and Publisher: Neil Edde

Book Designer: Maureen Forys, Happenstance Type-O-Rama
Proofreader: Rebecca Rider; Paul Sagan, Word One, New York

Indexer: Ted Laux
Project Coordinator, Cover: Katie Crocker

Cover Designer: Ryan Sneed
Cover Image: © Andrey Volodin / iStockPhoto

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-02731-8
ISBN: 978-1-118-11854-2 (ebk.)
ISBN: 978-1-118-11856-6 (ebk.)
ISBN: 978-1-118-11855-9 (ebk.)

No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic,

mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright

Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the

Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for

permission should be addressed to the Permissions Department, John
Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-

6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author
make no representations or warranties with respect to the accuracy or
completeness of the contents of this work and specifically disclaim all

warranties, including without limitation warranties of fitness for a
particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may

not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal,

accounting, or other professional services. If professional assistance is
required, the services of a competent professional person should be

sought. Neither the publisher nor the author shall be liable for damages
arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information
does not mean that the author or the publisher endorses the information
the organization or Web site may provide or recommendations it may

make. Further, readers should be aware that Internet Web sites listed in
this work may have changed or disappeared between when this work was

written and when it is read.
For general information on our other products and services or to obtain
technical support, please contact our Customer Care Department within

the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or fax
(317) 572-4002.

Wiley also publishes its books in a variety of electronic formats and by

http://www.wiley.com/go/permissions

print-on-demand. Not all content that is available in standard print
versions of this book may appear or be packaged in all book formats. If

you have purchased a version of this book that did not include media that
is referenced by or accompanies a standard print version, you may

request this media by visiting http://booksupport.wiley.com. For more
information about Wiley products, visit us at www.wiley.com.

Library of Congress Cataloging-in-Publication Data is available from the
publisher.

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or
its affiliates, in the United States and other countries, and may not be

used without written permission. Active Directory and Windows
PowerShell are registered trademarks of Microsoft Corporation in the

United States and/or other countries. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not

associated with any product or vendor mentioned in this book.

http://booksupport.wiley.com
http://www.wiley.com

Dear Reader,
Thank you for choosing Automating Active Directory Administration

with Windows PowerShell 2.0. This book is part of a family of premium-
quality Sybex books, all of which are written by outstanding authors who
combine practical experience with a gift for teaching.

Sybex was founded in 1976. More than 30 years later, we're still
committed to producing consistently exceptional books. With each of our
titles, we're working hard to set a new standard for the industry. From the
paper we print on, to the authors we work with, our goal is to bring you
the best books available.

I hope you see all that reflected in these pages. I'd be very interested to
hear your comments and get your feedback on how we're doing. Feel free
to let me know what you think about this or any other Sybex book by
sending me an email at
nedde@wiley.com. If you think you've found a technical error in this
book, please v i s i t http://sybex.custhelp.com. Customer feedback is
critical to our efforts at Sybex.

mailto:nedde%40wiley.com
http://sybex.custhelp.com

This book is dedicated to my beautiful and virtuous wife, Brenna, who
exemplifi es every trait of the Proverbs 31 woman.

Ken St. Cyr
To my family.

Laura E. Hunter

Acknowledgments

There's no way I could have written this book without my tremendous
support system. At the head of that system is my best friend and amazing
wife, Brenna. She has the patience of a saint and is wise beyond her years.
It's through her support and help that I was able to have the time to take
on this project and the encouragement to finish. Alongside her are my
brilliant and adorable children, Lincoln and Nora. Their helpfulness was
manifested in their cuteness and willingness to let me write.

When I first entertained the thought of taking on this book, I looked at
the timeline and realized that it was impossible for me to go about this
one alone. My first choice for a coauthor was the obvious one; Laura
Hunter's name is almost synonymous with Active Directory. Thankfully,
when I asked her to coauthor this book with me, she was happy to do it.
So, a big thanks goes out to Laura for helping me write this. Along with
Laura, we had two contributors working on this book, Chas Jeffries and
Nick DiCola. Both Chas and Nick bring an incredible amount of
experience and expertise in security and Active Directory, and I am
thankful that they were able to help.

It was a great pleasure to work with the wonderful group of
professionals at Wiley. In particular, I would like to thank the
development editor, Kim Beaudet; the production editor, Dassi Zeidel;
editorial manager, Pete Gaughan; copy editor Tiffany Taylor; and the
compositors at Laserwords. I would also like to thank my good friend and
technical editor, Steve Patrick, who is one of the deepest Active Directory
guys on the planet. And I would like to give an extra-special thanks to my
acquisitions editor, Agatha Kim, who, as always, was a real treat to work
with.

I also need to thank my wonderful friends and coworkers at Microsoft.
A big thanks goes out to my fellow Directory Masters and members of

the product group who answered my questions and gave me great insight.
I would also like to thank my many teachers, mentors, and encouraging
friends: Abe Berlas, Aaron Isom, Darryl Schaffer, Alex Bogdanovsky,
Heath Aubin, Ben Drake, Joe Fox, Jim Hale, and the members of the
Microsoft OCTO team.

And finally, I would like to give a special thanks to my wonderful
friends and family at Grace Baptist Church in Bowie, MD, who offered
their prayers and encouragement for me throughout this process. The
Godly direction given by my pastors and mentors has been invaluable:
Steve Lane, Dr. George Harton, Mark Tanious, and Larry Olson. There's
no group of people more loving and caring than those at Grace.

Ken St. Cyr
As always, my thanks go out to my friends and family for their support

in my pursuit of this project, especially Megan Kristel, Brian Puhl, Dean
Wells, Brian Desmond, Gil Kirkpatrick, and Stuart Kwan.

Laura E. Hunter

About the Authors

Ken St. Cyr is a solution architect at Microsoft in the Public Sector
Services CTO organization. Ken's primary areas of technical expertise are
in directory services and identity systems. Ken is a 14-year industry
veteran, consulting to a broad range of organizations to design and
deliver numerous large and complex identity solutions. In addition to
being a Microsoft Certified Master in Directory Services and Advanced
Infrastructure, Ken has written for TechNet Magazine and Windows IT
Pro magazine.

In his leisure time, Ken enjoys spending time with his wife, Brenna,
and two children, Lincoln and Nora. As a lifelong learner and avid
technology enthusiast, Ken enjoys researching the latest technologies and
attempting to understand how they work. Aside from that, Ken is most
enthusiastic about teaching and instructing others to realize their passion
through the magic of software. You can visit Ken's blog at
www.theidentityguy.com and follow him on Twitter at @kenstcyr.

Laura E. Hunter is a principal technology architect for Microsoft IT's
Identity and Access Management team, responsible for determining
architecture and strategy for Microsoft deployments of products and
services across the IAM suite. In previous lives, she has been an identity
management consultant, the Active Directory architect for a global
engineering firm, IT project leader for the University of Pennsylvania,
and director of computer services for a regional headquarters of the
Salvation Army. Laura has a bachelor's and master's degree from the
University of Pennsylvania, is an unrepentant ADFS technology zealot,
and likes to talk about herself in the third person when providing
autobiographical information. She blogs at www.shutuplaura.com, and
Twitters (tweets? She's not cool enough to know the verb form of
Twitter) @adfskitteh.

http://www.theidentityguy.com
http://www.shutuplaura.com

About the Contributing Authors

Chas Jeffries is a security architect in Microsoft Services. Before joining
Microsoft Services, Chas was a lead program manager in the Windows
Core Operating System Division (COSD) at Microsoft, where he
contributed to the design and development of BitLocker as well as a
number of other security features in the Windows operating system. Chas
is a CISSP with over 10 years in the computer security industry and 20
years in software engineering and information technology. Chas holds an
MBA from Seattle University and an MS in computer science from the
University of Nebraska—Omaha.

Nicholas DiCola is a senior consultant for Microsoft Consulting
Services and has designed and implemented directory solutions based on
Active Directory for over 12 years. He is one of the few Microsoft
Certified Masters for Directory Services.

Introduction

The goal of this book is to give you the information you need to know in
order to use PowerShell for managing, configuring, and scripting tasks in
Active Directory. In many cases, we didn't seek to answer your deepest
and darkest questions about Active Directory. Instead, our attempt is to
give you a practical guide that you'll refer to frequently and that will
become your administrative companion.

You'll find that this book contains a lot of information that is useful for
Active Directory (AD) administration even outside of the PowerShell
world. We've brought many years of AD experience to the table, and I'd
venture to say that among all the authors, we've probably seen about
every AD scenario there is. Most of us regularly give training on these
topics and are members of an elite community known as the Directory
Masters, where we've been put through the wringer to prove our abilities
and knowledge in AD. In reading this book, you're gaining our collective
experience in this technology.

One of the things that we really wanted to focus on in this book is
giving you lots of sample scripts. So as you read through these pages,
you'll find dozens of scripts and examples that you can use verbatim or
modify to put to work in your domain. Whether you're a one-person team
in a small organization or a member of a larger team, this book is your
own personal guide to automating AD.

If you're new to AD or PowerShell and are using either technology for
the first time, you can start at the first chapter and read through the book
to learn the technologies. Each chapter of this book deals with a different
area of AD administration, from deployment to security. Our hope is that
you'll keep coming back to this book and use it as a reference for how to
use PowerShell to accomplish a given task for AD or how to write that
one script that does your job for you. We look forward to being a well-

used tool in your AD administration toolbox.

Who Should Read This Book
Although many ranks of IT professionals can get something out of this
book, our target audience is primarily administrators who manage
Microsoft Active Directory Domain Services environments running on
Windows Server 2008 R2. Whether or not you have experience with
previous versions of AD server, you can use this book.

In order to use this book to the fullest, you should possess:
Some level of familiarity with Windows Server 2008 or Windows
Server 2008 R2
A basic understanding of Windows networking

This book may also prove useful to people who want to use hands-on
examples with relevant narratives to play with AD in a lab environment.
If you fall into this category, you can start at the first chapter and read
your way through the book, following the examples and steps as you go
along.

What Is Covered in This Book
To make this book easy to consume, we've broken it into three parts with
a total of 11 chapters. As you progress through this book, you start by
picking up the essential knowledge required to begin PowerShell 2.0 and
then move into various aspects of AD administration. Although there is
value in reading this book cover to cover in sequential order, it also
serves those well who prefer to flip around from chapter to chapter. At
the very least, however, we recommend that everyone read Chapter 1
first, even if you're a PowerShell 2.0 guru. Doing so will reinforce your
understanding of the basics and ensure that our terminology and scripting
style is in sync with yours.

Part 1: Administering Service Delivery
Chapter 1, “Using PowerShell with Active Directory,” serves as your
guide for understanding the essentials of Windows PowerShell. We'll
take you through the basics, from cmdlets to scripts, and then to some
advanced techniques. We'll also explain how PowerShell is used to
interact with AD and how to prepare your AD environment to get it
ready for PowerShell 2.0.
Chapter 2, “Managing Domains and Forests,” is intended to help you
manage two of the high-level containers in AD: domains and forests.
We'll walk you through the process of adding and removing domains,
as well as configuring domain- and forest-wide settings. In this
chapter, we'll also spend some time helping you understand how to
manage trust relationships between different domains and forests.
Chapter 3, “Managing Sites and Replication,” is about managing your
site topology and making sure your domain controllers replicate
properly. Here, you'll learn how to use PowerShell to automate your
site settings, replication settings, and even the process of ensuring that
replication is healthy in your environment.
Chapter 4, “Managing Domain Controllers,” focuses on all things that
are specific to the configuration of a domain controller (DC). This
includes the promotion and demotion of a DC, managing the Global
Catalog settings, and even the FSMO roles. In addition, we'll show
you how to use PowerShell to manage other configuration settings on
your DC, such the configuration of the AD database.
Part 2: Managing Active Directory Data
Chapter 5, “Configuring Active Directory Dependencies,” is about
working with two of the primary dependencies for a healthy AD:
name resolution and the system time. We'll show you how to use
PowerShell to configure and manage the Domain Naming System
(DNS) as well as managing the system time service across your forest.
Chapter 6, “Administering User and Group Accounts,” will probably
be one of the most used chapters in the book. This chapter teaches you

how to use PowerShell for automating basic and advanced operations
for both users and groups in your domain. We'll provide lots of
PowerShell guidance in this chapter, and these practices will instantly
become part of your toolbox for working with AD in your lab
environment as well as your production forest.
Chapter 7, “Managing Computer Accounts, Objects, and
Organizational Units,” guides you through managing those non-user
and non-group objects. We'll walk you through using PowerShell to
manage computer accounts and organizational units specifically, but
we'll also spend some time showing you how to use PowerShell to
manage all types of objects in the forest.
Chapter 8, “Managing Group Policies,” will help you use PowerShell
to automate the creation, modification, and application of Group
Policy Objects in your domains. You'll also use PowerShell scripts to
perform some other useful Group Policy management functions, such
as generating an automated report of the Group Policy settings and
linking Group Policy Objects to organizational units (OUs), sites, and
domains.
Part 3: Protecting Your Investment in Active Directory
Chapter 9, “Automating Active Directory Security,” is a rare chapter
that you'll likely not find anywhere else. Here, we'll show you how to
use PowerShell to manage AD security settings across your forest.
Also in this chapter, you'll learn how to use PowerShell to manage
BitLocker settings and recovery passwords. This special content was
written and contributed to this book by a BitLocker program manager
at Microsoft.
Chapter 10, “Backing Up Data and Recovering from Disasters,” is one
of those chapters that you can't survive without. We'll explain how to
use PowerShell to both back up and restore AD data. In this chapter,
we'll cover automating the backup and restore process for directory
data, SYSVOL data, Group Policies, and certificates.
Chapter 11, “Monitoring Health and Performance,” wraps up this

book by helping you use PowerShell to keep your AD environment
healthy and performing at an optimum level. Not only will we show
you what to monitor on your DCs, but we'll also spend time
explaining what all the data means.

How to Contact the Author
I welcome feedback from you about this book or about books you'd like
to see from me in the future. You can reach me by writing to
ken@theidentityguy.com. For more information about my work, please
visit my blog at www.theidentityguy.com.

Sybex strives to keep you supplied with the latest tools and information
you need for your work. Please check their website at www.sybex.com,
where we'll post additional content and updates that supplement this book
if the need arises. Enter Active Directory in the Search box (or type the
book's ISBN—9781118027318), and click Go to get to the book's update
page.

mailto:ken%40theidentityguy.com
http://www.theidentityguy.com
http://www.sybex.com

Part I

Administering Service Delivery
Chapter 1 Using Powershell with Active Directory
Chapter 2 Managing Domain and Forests
Chapter 3 Managing Sites and Replication
Chapter 4 Managing Domain Controllers

Chapter 1

Using PowerShell with Active Directory

IN THIS CHAPTER, YOU WILL LEARN TO:
UNDERSTAND THE BASICS OF POWERSHELL

Use the Shell
Use the Scripting Environment
Understand Profiles
Work with Cmdlets
Script Administration Tasks

UNDERSTAND HOW POWERSHELL AND ACTIVE
DIRECTORY WORK TOGETHER

Interact with Active Directory Using PowerShell
Prepare Your Environment for the Active Directory Module

Since the dawn of the information technology age, administrators have
been continually searching for ways to make their jobs easier. Rather than
spending time performing the same or similar tasks repeatedly, many
administrators have taken to adopting some form of automation.
Throughout the years, you've witnessed many advances in automation,
from the early days of DOS batch files to VBScripts and Windows
Management Instrumentation (WMI). These advances come out of the
desire for things to happen on their own—to use the computing power
available at the fingertips of administrators to make their lives easier.

The next generation of automation technology was officially released
for Windows environments in 2006. PowerShell (formerly referred to as
Monad in the beta release years) promised to deliver an extremely

powerful and flexible scripting environment complete with access to
standard object models and programming interfaces. PowerShell has
certainly lived up to the promise over the years, but adoption by
Microsoft products has been slow. Until Windows Server 2008 R2, there
was no out-of-the-box PowerShell extension for Active Directory.
However, the adoption of PowerShell has now become mainstream, and
Active Directory has a built-in module for PowerShell. In this chapter,
you'll learn the basics of PowerShell and understand how Active
Directory and PowerShell work together.

Understand the Basics of PowerShell
PowerShell version 1 debuted as a web download and as part of Windows
2008, although you had to install it through the Add Features Wizard in
the Server Manager. PowerShell v2 is installed by default in Windows
Server 2008 R2. At its core, PowerShell is a command interpreter. Much
as with the command prompt, you type in a command and press Enter,
and the command executes. But beyond that, PowerShell has some
amazing scripting capabilities that really take it to the next level in terms
of administrative usefulness. Because of this, it's becoming increasingly
more common to see people replacing the command prompt with
PowerShell. In fact, most of the things that you can do at a command
prompt can be done by default with PowerShell using the same
commands. Figure 1.1 shows a comparison of the dir command run in a
traditional command prompt (top) and PowerShell (bottom).

Figure 1.1 PowerShell can do just about anything that the command
prompt can do.

One of the things you'll notice in Figure 1.1 is that the information
PowerShell exposes by default looks more structured. The entries in the
output have headings attached to them, similar to how a spreadsheet
might look. This is because PowerShell isn't a text-based command
interpreter like the Windows command prompt and other command
shells. Standard text-based interpreters can take a text string as input and

return a text string as output. PowerShell is based on the .NET
Framework. Rather than using text, PowerShell takes .NET objects as
input and returns .NET objects as output. So, when the dir command is
run, PowerShell enumerates the files and folders on disk and treats each
file and folder as a separate object. Each object is composed of a variety
of properties that describe it, which are exposed as the headings across
the top of the output. This object model is unique to PowerShell and is
one of the primary things that elevates it above other commonly used
shells.

Before you begin using PowerShell to automate Active Directory, you
must first understand some of the fundamentals. The essential
components are used as building blocks for creating the commands and
scripts that you'll use in your automation tasks. Without this base
knowledge, your commands and scripts will be limited, and you won't be
able to take advantage of the true power of PowerShell. In this section,
we'll take a closer look at these components.

Use the Shell
The shell is the primary way that you'll interact with PowerShell. The
shell is very similar to the Windows command prompt. You can type in
commands and have some output returned to you. You can launch the
shell by clicking the Start menu and selecting All Programs ⇒
Accessories ⇒ Windows PowerShell ⇒ Windows PowerShell. If you're
on a 64-bit operating system, then you may notice that there are two
PowerShell options: Windows PowerShell and Windows PowerShell
(x86). The x86 version is the 32-bit version of PowerShell. Unless you
need to run a command in a 32-bit environment, we recommend using the
64-bit version of the shell. This will allow you to use additional memory
beyond 4 GB if you're caching lots of data in the shell. And with Active
Directory, this could actually be a possibility if you have a large forest. In
Windows Server 2008 R2, PowerShell is pinned to the taskbar by default,
so you can launch it by clicking the PowerShell icon. You can also choose

to launch it by typing powershell.exe in the Run dialog or at the command
prompt.

Sometimes, you'll have to launch PowerShell in administrator mode.
This may be required when you're making system-level changes through
PowerShell. To use PowerShell in administrator mode, you can right-
click the PowerShell executable and select Run As Administrator from
the menu. Depending on your system's configuration, you may be
prompted with a User Account Control dialog. If you're prompted, click
Yes to continue. The shell will launch, and it will look similar to the
window in Figure 1.2.

Figure 1.2 The PowerShell shell

When you're working with the shell, you can use some shortcuts to
make your job easier. Each command that you type in is kept in memory.
Therefore, you can cycle through commands that you typed earlier by
using the up and down arrow keys. You can use the right arrow key to
retype the previous command one character at a time. You also have the
option of accessing a list of the previous 50 commands by pressing the F7
key, as shown in Figure 1.3. Navigate through this list by using the arrow
keys and pressing Enter on the command you want to execute, or type the

command number that you want to execute and press F9. To close the list
without executing a command, press the Esc key.

Figure 1.3 PowerShell command history

One of the lesser-known customizations of PowerShell is the ability to
change the look at and feel of the shell itself. You can do this via the
Get-Host cmdlet in PowerShell (more on cmdlets later in this chapter). You
modify certain components of the shell by changing the properties in the
console. For example, to change the text color to green, you can use the
following command:
(Get-Host).UI.RawUI.ForegroundColor = “Green”

Table 1.1 outlines some properties that you may want to change in the
console.

Table 1.1 Console Properties
Property Description Example Command

ForegroundColor The color of the text (Get-Host).UI.RawUI
.ForegroundColor = “Green”

BackgroundColor The color of the background
(Get-Host).UI.RawUI
.BackgroundColor = “Black”

WindowTitle The text that is displayed in the title bar of the PowerShell window (Get-Host).UI.RawUI.WindowTitle
= “Ken's PowerShell Window”

Use the Scripting Environment
PowerShell 2.0 provides a new Integrated Scripting Environment (ISE)
for writing PowerShell scripts with more ease. The ISE provides some
great capabilities that are typically found in expensive development
environments. Full development environments offer additional features
that justify the cost if you'll be writing a lot of code; but if you're just
looking for basic debugging and script writing, you need look no further
than the ISE.

The PowerShell ISE isn't installed by default on Windows Server 2008
R2, so you'll need to add it if you want to use it. You can install the
PowerShell ISE through Server Manager, using the Add-WindowsFeature
PowerShell cmdlet. This cmdlet isn't registered by default, so you must
first import the Server Manager module in PowerShell:
Import-Module ServerManager

After the module is imported, you have access to the Add-WindowsFeature
cmdlet. You can run the following command to add the PowerShell ISE:
Add-WindowsFeature PowerShell-ISE

The 3.5.1 version of the .NET Framework is required for the ISE, so
you may notice that installing as well if it's not already installed on your
server. After you install the ISE, you can launch it by clicking the Start
menu and selecting All Programs ⇒ Accessories ⇒ Windows
PowerShell ⇒ Windows PowerShell ISE.

The ISE will be launched as shown in Figure 1.4. It consists of three
panels that assist you in writing scripts:

Script Editor The script editor is the top panel of the ISE. You can
have multiple scripts open at the same time, and each script will have
its own tab in the editor. You can run your script and test it in the

editor by clicking the green arrow in the toolbar.
Command Pane The bottom panel is called the command pane. This
pane provides you with an interactive PowerShell command interface
just as if you were using the shell itself. You can type in commands
freehand and see the results. This is especially useful when
determining the syntax of your command before inserting it into a
script.
Output Pane The output pane is the middle pane in the ISE. When
you run the script you're writing or execute a command in the
command pane, the output is displayed in the output pane.

Figure 1.4 The PowerShell Integrated Scripting Environment

Note
It's important to understand that the ISE isn't the only way to create
PowerShell scripts. PowerShell scripts can be created with any text editor,
including built-in utilities like Notepad and WordPad, along with third-party
development environments.

Understand Profiles
PowerShell also has a concept of profiles. Profiles in PowerShell are
similar to profiles in Windows. When you log on to Windows, your user
profile is loaded, which loads all of your Windows customizations, such
as your desktop items and wallpaper. Likewise, PowerShell profiles save
your PowerShell customizations. When you open PowerShell, your
profile will load, and your customizations will be loaded as well.

Profile Scripts
The PowerShell profile is really a script that runs automatically when you
open PowerShell. PowerShell scripts are covered in more detail later in
this chapter, but for now just know that you can execute various
PowerShell commands, save variables, and define functions in your
PowerShell profile. For example, suppose you frequently put your
computer into Hibernate mode. You can create a custom function
(functions are also covered later in this chapter) that puts the computer in
Hibernate mode by typing in a simple command. To do this, add the
following line to your PowerShell profile:
function hib { shutdown -h -t 0 }

This function tells PowerShell to run the shutdown command with the -h
(hibernate) switch whenever you type in hib. Because your PowerShell
profile is loaded every time you open PowerShell, the hib command will
always be available to you.

Creating a Profile
By default, you have a PowerShell profile defined, but the file doesn't
exist and therefore isn't executed. You determine what your current
profile script is by displaying the contents to the profile variable. To see
the profile variable, type the following command:
$profile

You can determine whether the profile script exists by the running the
Test-Path cmdlet, which returns true if the file exists and false if it doesn't:
Test-Path $profile

If the profile script doesn't exist, you can create it using any text editor,
such as Notepad.exe. You can also run the New-Item command to create the
profile script file:
PS C:\Users\Administrator> New-Item -Path $profile -ItemType File -Force

 Directory: C:\Users\Administrator\Documents\WindowsPowerShell

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a--- 11/29/2010 3:29 PM 0 Microsoft.PowerShell_profile.ps1

After the profile script is created, you can use Notepad to edit it:
PS C:\Users\Administrator> notepad.exe $profile

If you try to create a profile script now, you may receive the error
shown next when PowerShell attempts to load the profile script. This is a
security measure put in place by PowerShell to ensure that only trusted
scripts are run. You'll learn how to create a trusted script later in this
chapter in the “Create PowerShell Scripts” section:
Windows PowerShell
Copyright (C) 2009 Microsoft Corporation. All rights reserved.

File C:\Users\Administrator\Documents\WindowsPowerShell\Microso
ft.PowerShell_profile.ps1 cannot be loaded because the executio
n of scripts is disabled on this system. Please see “get-help a
bout_signing” for more details.
At line:1 char:2
+ . <<<< ‘C:\Users\Administrator\Documents\WindowsPowerShell\M
icrosoft.PowerShell_profile.ps1’
 + CategoryInfo : NotSpecified: (:) [], PSSecurity
 Exception
 + FullyQualifiedErrorId : RuntimeException

Work with Cmdlets
In PowerShell, a cmdlet (pronounced command-let) is a small,
lightweight command. Each cmdlet is self-contained, meaning that you
can run it by itself as its own command. For example, you can execute the

get-process cmdlet, and it will return the list of processes currently running
on the computer, as shown in Figure 1.5.

Figure 1.5 Running the Get-Process cmdlet returns the list of processes
currently running on the computer.

Cmdlets are precompiled and can be run from the PowerShell command
interpreter directly or be used in a script. They're surprisingly flexible
and can be used in a variety of ways.

PowerShell has several cmdlets built in, and applications can provide
their own cmdlets as well. For example, Active Directory adds 76
additional cmdlets to PowerShell when the module is installed. In fact,
anyone can write a cmdlet to be used in PowerShell; the process for
writing a cmdlet is well documented by Microsoft.

Execute Cmdlets
When it comes down to it, executing cmdlets is as easy as opening

PowerShell and typing in the name of the cmdlet, as was demonstrated in
Figure 1.5.

Basic Cmdlet Structure
When you work with cmdlets long enough, you'll start to notice some
similarities between them. Most cmdlets start with a verb, such as Get, Set,
Add, or Remove. Usually following the verb is a noun, such as Process. This
common structure used in cmdlets is referred to as a verb-noun pair. For
example, in the Get-Process cmdlet, the verb (Get) tells the cmdlet that it's
retrieving information for the noun (Process). All cmdlets are singular, so
you'll never see a cmdlet called Get-Processes.

Executing a cmdlet is as simple as opening up PowerShell and running
the cmdlet:

1. Open PowerShell by choosing Start ⇒ All Programs ⇒ Accessories
⇒ Windows PowerShell ⇒ Windows PowerShell.
You can also launch PowerShell by clicking the icon in the taskbar, as
shown in Figure 1.6. After PowerShell loads, you're presented with the
cursor, ready to accept your command.
2. Type in the cmdlet, and press Enter. For example, to get a list of the
services currently installed on the computer, you can run the Get-Service
cmdlet.

Figure 1.6 Launching PowerShell via the icon in the taskbar

Parameters
You can also feed a cmdlet parameters that influence the behavior of the
cmdlet when it's run. To specify a parameter, append it to the end of the
cmdlet. For example, if you want to get information about a specific
service on your computer, you can run the same Get-Service cmdlet that
you just ran, but this time specify the name of the service as a parameter.

Figure 1.7 shows the output of the Get-Service cmdlet run against the
Windows Update service.

Figure 1.7 Adding a parameter to a cmdlet

The -Name parameter shown in Figure 1.7 is a positional parameter. This
means you don't have to specify -Name when using the parameter. If you
ran the same cmdlet but didn't include -Name in the command, the cmdlet
would assume that the first unnamed parameter was the -Name parameter.
That makes the following two commands identical:
Get-Service -Name “Windows Update”
Get-Service “Windows Update”

This next command is also identical to the first two:
Get-Service -ComputerName localhost “Windows Update”

In the previous command, the first parameter used (-ComputerName) is a
named parameter, because the parameter is specified by using -ComputerName
in the command, followed by the name of the computer (localhost in this
case). The second parameter wasn't named. However, because it's the first
unnamed parameter in the command, the cmdlet assumes that it's the -Name
parameter. It's the same as using the following command:
Get-Service -ComputerName localhost -Name “Windows Update”

You'll learn how to find out which parameters are positional or named,
along with their default values, later in this chapter.

Each cmdlet has a different set of parameters that it recognizes. The
-ComputerName parameter in the previous example is only relevant for the
Get-Service cmdlet. If you tried to pass it into the Get-ChildItem cmdlet, an
error would be thrown:
PS C:\> Get-ChildItem -ComputerName localhost
Get-ChildItem : A parameter cannot be found that matches parameter name ‘Comput
erName’.
At line:1 char:28
+ Get-ChildItem -ComputerName <<<< localhost
 + CategoryInfo : InvalidArgument: (:) [Get-ChildItem], ParameterB
 indingException
 + FullyQualifiedErrorId : NamedParameterNotFound,Microsoft.PowerShell.Comm
 ands.GetChildItemCommand

However, PowerShell implements some parameters that are common to
all cmdlets. These are referred to as common parameters. You can
retrieve a list of common parameters in PowerShell by running the
following command:
Get-Help about_CommonParameters

Table 1.2 lists the common parameters and describes what each does.

Note
Cmdlets and their parameters aren't case sensitive. However, it's a good
practice to use capitalization for cmdlets that other people might read, such
as when writing scripts. This increases the readability of the command
without affecting the syntax of the cmdlet.

Table 1.2 Command Parameters
Name Description

-Verbose Includes detailed information in the output of the cmdlet. This is typically in-depth information that may not
be commonly used.

-Debug Includes programmer-level detail in the output of the cmdlet. In most day-to-day administration tasks, the -
Debug parameter is rarely used.

-WarningAction

Specifies what the cmdlet should do if it encounters a warning. The possible values are SilentlyContinue
(continue executing the cmdlet without notification), Continue (display a notification and then continue
executing the cmdlet), Inquire (ask the user whether to stop or keep going), and Stop (stop execution of the
cmdlet).

-
WarningVariable

Specifies a variable to which warning information can be written. You can use this variable later in other
commands or scripts.

-ErrorAction

Specifies what the cmdlet should do if it encounters an error. The possible values are SilentlyContinue
(continue executing the cmdlet without notification), Continue (display a notification and then continue
executing the cmdlet), Inquire (ask the user whether to stop or keep going), and Stop (stop execution of the
cmdlet).

-ErrorVariable Specifies a variable to which error information can be written. You can use this variable later in other
commands or scripts.

-OutVariable Specifies a variable to which you want to write the output objects.

-OutBuffer Determines how many objects are in the output buffer before the objects are passed through the pipeline. This
is an advanced parameter that you probably won't use frequently, if at all.

Aliases
If you've already been using PowerShell, you may have noticed that not
all of the cmdlets you've run have conformed to the structure discussed
earlier. For example, the dir command doesn't conform to the verb-noun
pair syntax. The reason for this is that dir is really an alias. In PowerShell,
a n alias is an alternate name that you can give to command elements,
such as cmdlets and scripts, to make them easier for users to run. When
you execute the dir alias, the cmdlet that is really being run is Get-ChildItem.
You don't have to use an alias; if you wanted to, you could run the
Get-ChildItem cmdlet directly. However, the dir alias saves you time; and if
you're used to typing dir into a Windows command prompt to get a listing
of files and directories, then this alias makes PowerShell a little more
intuitive and uses the muscle memory you've built up over the years.

You aren't limited to one alias per command. If you have a Unix or
Linux background, then you're probably more likely to use the ls
command for listing files and directories. For this reason, ls is also an
alias to the Get-ChildItem cmdlet.

To create your own alias, you can run the New-Alias cmdlet. You'll need
to pass in the name for the alias and the command element for which
you're creating the alias. The following example creates an alias called d
for the Get-ChildItem cmdlet. If you create this alias, then you only need to
type d instead of dir or ls to get a listing of files and directories in
PowerShell:
New-Alias -Name d -Value Get-ChildItem

Earlier in this chapter, you learned about using profiles to customize

the PowerShell environment for different users. You can add your
commonly used aliases to your profile so that your aliases are loaded
every time you open PowerShell.

String Cmdlets Together
When used alone, a cmdlet can be a powerful tool. However, you can use
cmdlets more efficiently by stringing multiple cmdlets together using a
process called pipelining. When you pipeline two cmdlets, the results
from the first cmdlet are fed into the second cmdlet. In order to perform a
pipeline, you use the pipe character (|). For example, if you want to kill
every Internet Explorer process running on your computer, you can use
the Get-Process cmdlet and pipe its output into the Stop-Process cmdlet. The
command to accomplish this looks like this:
Get-Process iexplore | Stop-Process

A pipelined cmdlet is also sometimes referred to as a one-liner. Some
advanced administrators pride themselves on the length of their one-
liners. Some consider a long one-liner that performs a complex task an
administrative badge of honor. One-liners can get complex, but when you
start using PowerShell regularly, they will become second nature. Some
of the complex one-liners can be good substitutes for administrative tasks
that require multiple steps. For example, the following one-liner will look
in the Application Event Log, find all the error and warning events, put
them in a CSV file, and then open the file with Microsoft Excel:
Get-EventLog Application -EntryType Error | Export-Csv errors
.csv -NoTypeInformation | Start-Process excel.exe errors.csv

At first, it may seem complex, but you could easily create a function
for this one-liner, put it in your profile, and have an easier and more
flexible way to view your critical system events. Or imagine running this
command on each of your domain controllers every day using the Task
Scheduler and outputting your errors and warnings into a shared folder.

Get Help on a Cmdlet

You can get help executing any cmdlet by using a special PowerShell
cmdlet called Get-Help. When you execute Get-Help, you must specify the
name of the cmdlet that you want help on as the first parameter. For
example, if you're stuck on how to use the Get-Process cmdlet, you can run
the following command to learn how to use it:
Get-Help Get-Process

Figure 1.8 shows the output of this command.

Figure 1.8 The output of the Get-Help cmdlet

Various types of help are available for cmdlets. If you don't want to
read through a large screen full of text just to find out the syntax for a
particular command, you can add the -Examples parameter to the Get-Help
cmdlet. This will only display the examples for the cmdlet. Figure 1.9
demonstrates the output of Get-Help with the -Examples parameter.

Figure 1.9 Using Get-Help with the -Examples parameter

Table 1.3 outlines the various parameters available for use with the
Get-Help cmdlet.

Table 1.3 Parameters for the Get-Help Cmdlet
Parameter Description
-Examples Displays various examples that demonstrate the use of the cmdlet
-Detailed Displays detailed information on the cmdlet, including a description of each parameter that is accepted
-Full Displays the full output of the technical information for the cmdlet

Format the Output of a Command
Sometimes, when you run a command, the output is difficult to read or
you don't get all the information you wanted. You can change the output
of the cmdlets that you run in various ways. This is accomplished using
cmdlets beginning with Format-.

There are multiple Format- cmdlets that will format the output into
multiple views. To use them, you simply pipeline the output from one
cmdlet into the appropriate format cmdlet. For example, if you want to
view the running processes as a list, you can pipeline the output to the

Format-List cmdlet:
Get-Process | Format-List

To view the list of available format cmdlets, you can run the Get-Command
cmdlet:
PS C:\> Get-Command format-*

CommandType Name Definition
----------- ---- ----------
Cmdlet Format-Custom Format-Custom [[-Property] <...
Cmdlet Format-List Format-List [[-Property] <Ob...
Cmdlet Format-Table Format-Table [[-Property] <O...
Cmdlet Format-Wide Format-Wide [[-Property] <Ob...

Test What a Command Will Do
There may be times when you just want to see the output of a particular
command to make sure you have it right, without making the actual
change to the system. This is especially useful when you're writing
scripts, as covered in the next section, “Script Administration Tasks.” To
find out what is affected by a command without actually running it, you
can use the -WhatIf parameter.

Perhaps you're trying to figure out if you have the syntax of a cmdlet
right, but you don't want to accidently run the cmdlet if you happen to get
it right. In this case, you can use the -Confirm parameter. Doing so adds a
confirmation prompt to your command that requires additional input by
the executor before it continues.

Script Administration Tasks
In addition to offering a robust environment for executing cmdlets,
PowerShell also provides an integrated environment for writing scripts.
Like one-liners, scripts allow you to execute a series of commands all at
once, without having to enter each command individually. For example,
if you have a list of commands that you run every time a server is
promoted to a domain controller, you can put those commands into a
script. Then, the next time you install Active Directory on a server, you

run the script once instead of executing each command.
Scripts are also useful if you want to apply some logic to a series of

commands. For example, you could write a script to determine the last
time your users logged in and then disable the accounts and move them to
a different Organizational Unit (OU) if it's been over 90 days. In this
case, the script would make the decisions about what to do with the user
accounts.

Create PowerShell Scripts
You can create a script using any standard text editor that you're
comfortable with. However, there are advantages to using the built-in
PowerShell ISE discussed earlier. If you have the ISE available to you, it
makes sense to use it rather than a standard text editor.

When you create scripts, you type in the commands just as you would if
you were typing them directly into the shell. You have the option of
inserting comments into your scripts by placing a pound symbol (#) in
front of the comment, as shown in the following snippet:
This is a comment.
Get-Process

In PowerShell v2, you also have the ability to use block comments.
This allows you to comment out large portions of text in your script files.
To use a block comment, you start the comment with <# and end it with #>.
Everything in between is considered a comment, as demonstrated in the
following snippet:
<#
This is a block comment.
The next line of code will execute the Get-Process cmdlet
which will display a list of running processes on the screen
#>
Get-Process

When you're done creating your script, save it with a .ps1 extension, and
the script will be executable in PowerShell.

Execution Policy

With great power comes great responsibility. Being the robust scripting
environment that PowerShell is, its capabilities could potentially be
misused. There has been a lot of scripting misuse in the past with other
scripting languages. Multiple vulnerabilities, viruses, and malware have
used script-based exploits to engrain themselves on users’ machines. To
prevent this from happening in PowerShell, an execution policy defines if
and how scripts can run.

By default, the execution policy is configured to not allow any scripts
to run. This security enhancement is meant as a failsafe to prevent users
from accidently executing malicious code and isn't intended as a fully
vetted security architecture. Users can easily overcome the limitations of
the execution policy by manually typing the script into PowerShell line
by line or by copying and pasting it in.

You can use six different settings for the PowerShell execution policy.
Table 1.4 describes each of these settings.

Table 1.4 Execution Policy Settings
Setting Description
Restricted

(Default) Prevents all scripts from executing.

AllSigned Allows only scripts that are signed with a trusted certificate.

RemoteSigned Allows scripts written locally to execute, but scripts downloaded from a nonlocal source (such as a website or
email) must be signed with a trusted certificate.

Unrestricted Allows unsigned scripts to execute but warns the user about scripts that were not created from the local machine.
Bypass No scripts are blocked, and no warnings are generated.
Undefined No execution policy is specifically defined.

You can determine what the current execution policy is by running the
Get-ExecutionPolicy cmdlet:
PS C:\> Get-ExecutionPolicy
Restricted

If you're running scripts that you wrote for computer administration,
then using the RemoteSigned setting will be ideal in most cases. However,
you do have the option of signing the scripts that you create for additional
security. If you're going to be using PowerShell scripts for Active
Directory administration and storing the scripts on a network share or

somewhere that other people may have write access to, then it's a good
idea to sign the scripts. Signing the scripts will ensure that no one can
tamper with them. If you choose to sign the scripts that you write locally,
then using the AllSigned execution policy is recommended.

To configure the execution policy setting, use the Set-ExecutionPolicy
cmdlet:
Set-ExecutionPolicy RemoteSigned

Script Signing
When you sign a script, you put a digital signature on the script that can
be traced back to the owner of the signature. The script is run through a
mathematical algorithm that generates a unique value (called a hash) that
is based on the contents of the script. If the script is changed, a different
hash value is generated. The process that is executing the script can run
the script through the same algorithm that was used to sign it, and if the
resulting hash value is different than the one the script is signed with, the
process knows the script has been tampered with.

This hash value isn't stored in plain text, though, because someone
could potentially change the script and then change the hash value to
reflect the script's new hash. To prevent this from happening, the hash
value is encrypted with a public/private key pair. The idea behind a
public/private key pair is that data can be encrypted with one of the keys
and can only be decrypted using the other. When a user obtains a Public
Key Infrastructure (PKI) certificate, two keys are associated with the
certificate: the public key and the private key. The private key is only
available to the owner of the certificate. In fact, most of the time, this key
is automatically generated and stored in a protected manner in the local
certificate store of the computer. The public key, however, is usually
given to other people in a publically available certificate.

To illustrate this, consider two people, Alice and Bob. Alice created a
script, and Bob is using it. When Alice signs the script that she created,
the script's hash gets encrypted with Alice's private key. When Bob uses

the script, he decrypts the hash with Alice's public key before checking
whether the hash is valid. By doing this, Bob is assured that Alice really
created the script, because she is the only person who has her private key.
Bob doesn't manually validate Alice's script against her public key,
however. This process is handled by PowerShell when Bob attempts to
run the script.

To be able to sign scripts, you first need to obtain a code-signing
certificate with a private key. This certificate must be trusted by the
computer that the script is executing on in order for it to be considered
valid. There are a few different ways that you can obtain a trusted
certificate:

Use an Internal Public Key Infrastructure Some organizations have
their own certificate authorities (CAs) for creating and validating PKI
certificates. If your organization has its own CA, you can probably
request a code-signing certificate from it. When using an internal PKI,
you run a good chance that your certificate will be trusted by the
computers your PowerShell scripts might run on. However, this isn't
always the case, because the trust configuration is heavily dependent
on how the organization configured the PKI.
Use a Publically Trusted Certificate Authority If you don't have an
internal PKI, then you can buy a trusted certificate from a well-known
Internet CA such as VeriSign or Go Daddy. Many of these CAs are
trusted by default in Windows. Therefore, if you obtain a code-signing
certificate from one of them, you'll almost be guaranteed that the
certificate is trusted by any computer on which you run the
PowerShell script. The downside to this method is that it's going to
cost you money.
Use a Self-Signed Certificate You can also obtain a self-signed
certificate, which means that you create the certificate yourself. The
drawback to self-signed certificates is that the certificate is only
trusted by the computer on which it was created. This means that if
you create a script and sign it with a self-signed certificate that was

issued by one computer, the script will only be considered valid on
that computer. You can get around this, however, by adding the self-
signed certificate to the list of trusted certificates on your other
computers. If you decide to use a self-signed certificate for scripts
that you use for Active Directory administration, you should ensure
that the self-signed certificate is trusted by each domain controller.
The good news is that you can do this rather easily with a Group
Policy Object (GPO).

To create your own self-signed certificate signing PowerShell scripts,
you can use the makecert.exe utility included in the Windows SDK. You can
download this SDK from http://msdn.microsoft.com/en-us/windows/bb980924.aspx.
After you install the SDK, use the following command to create a self-
signed certificate:
makecert.exe -r -pe -n “CN=PowerShell Signing Cert” -ss MY -a sha1 -eku
1.3.6.1.5.5.7.3.3

You can then run the following PowerShell command to verify that the
certificate was successfully created:
PS C:\> Get-ChildItem cert:\currentuser\my -codesigning
 Directory: Microsoft.PowerShell.Security\Certificate::currentuser\my
Thumbprint Subject
---------- -------
DA747C75B468FCF2701FC844799B3DCE44B5F512 CN=PowerShell Signing Cert

Now that you've obtained your certificate, you can use the
Set-AuthenticodeSignature cmdlet to sign your PowerShell script. You'll need
to pass the certificate object as a parameter in the cmdlet. You can do this
by assigning the certificate to a variable and then referencing the variable
in the Set-AuthenticodeSignature cmdlet. For example, if you wanted to sign a
script called UpdateSiteTopology.ps1, you would run the following commands:
PS C:\> $certificate = Get-ChildItem cert:\currentuser\my -codesigning
PS C:\> Set-AuthenticodeSignature UpdateSiteTopology.ps1 $certificate

After you sign the script, you'll notice that a signature block has been
added to the end of the file. This block represents the encrypted hash. If
you modify the script, be sure to re-sign it so this encrypted hash value is
updated.

http://msdn.microsoft.com/en-us/windows/bb980924.aspx

Use Variables in a Script
You could write scripts to execute one command after another, but
PowerShell scripts can be more than mere substitutes for batch files. In
order to take your scripting to the next level and write more powerful
scripts, you need to learn some of the basics of scripting, starting with
variables.

Variables are nothing more than a way to temporarily store data for
later use. In PowerShell, variables are easy to work with because they can
hold any type of data, such as text, numbers, or whole objects.

Note
Some other development languages require you to define what kind of data
your variables will hold up front, but this isn't the case with PowerShell.

Variables in PowerShell all begin with a dollar sign ($). For example, if
you wanted to create a variable and hold a sentence in it, you would use
the following PowerShell command:
$MySentence = “Active Directory Rules!”

This example stores the text string “Active Directory Rules!” into the
variable called $MySentence. You can name variables anything you want, as
long as they begin with a dollar sign. Here's another example, except this
time we'll store a number:
$MyInteger = 1234567890

Notice that we didn't use the quotation marks this time. You only use
quotation marks for text strings—you have to use quotation marks for
text so PowerShell knows you're using text and not trying to run a
PowerShell cmdlet instead.

You can store data other than text and numbers in variables. For
example, the following command is valid in PowerShell:

$DirectoryListing = dir

This command runs the PowerShell command dir, which lists the files
and folders in the current directory and stores the output in the variable
called $DirectoryListing. $DirectoryListing doesn't contain the text of the
output from the dir command. Instead, $DirectoryListing stores each of the
files and folders as objects with their own properties. This allows you to
do some interesting things. For example, you could go through the file
and folder objects in the $DirectoryListing variable and rename them.

Variables can contain many types of objects. The type of object that is
stored in the variable depends on the output of the command that is
populating the variable. The dir command we used in the example works
with files and folders, so it stored file and folder objects. If you used
another command, such as Get-Service, it would store the objects that
represent the computer's services and their associated properties into the
variable.

You can see what variables are currently being used by running the
Get-Variable cmdlet as shown in Figure 1.10.

Figure 1.10 Listing the currently used variables

In addition to variables that you define yourself, there are special
variables called shell variables built into PowerShell. Shell variables are

automatically created by PowerShell. An example of a shell variable is
$null, which always means that something has no value. For example, if
you had an Active Directory user object and you wanted to clear the
Description attribute, you could set the Description property to $null. This can
be accomplished with the following command:
Set-ADUser “Lincoln Alexander” -Description $null

There are many other shell variables in PowerShell. Table 1.5 lists
some of the more common shell variables you'll encounter.

Table 1.5 Common Shell Variables
Variable Description
$_ Refers to the current object that is being processed in a pipeline or a loop.
$Error When an error is encountered in the command, the error is stored here.
$Home The home directory of the current user.
$true Represents the condition True.
$false Represents the condition False.
$null Represents a null entry, meaning the property is blank.

Add Logic to a Script
Logic allows your scripts to do things to the variables you're using and
make decisions about what to do. You need to know two basic logic
concepts in order to write PowerShell scripts: loops and conditionals.

Loops
Loops allow you to go through a collection of items and do something to
each item. For example, if you run the Get-Process cmdlet on one of your
servers, PowerShell displays a list of processes that are currently running
on that server. However, you can assign the output of Get-Process to a
variable, using the following command:
$RunningProcesses = Get-Process

In the $RunningProcesses variable, each process is represented by a
different object. You could loop through the objects in this variable and
do something to each object, such as display the process ID of each

process. One way to accomplish this is with the ForEach-Object cmdlet:
$RunningProcesses | ForEach-Object { Write-Host $_.Name : $_.Id }

By piping the $RunningProcesses variable into the ForEach-Object cmdlet, the
ForEach-Object cmdlet can cycle through all the objects. The command
inside the curly brackets ({...}) is executed for each of the objects
processed by the loop. You may recognize the $_ variable from Table 1.5.
The $_ variable references the current object that the loop is processing.
So when $_.Id is used, you're working with the Id property on each of the
objects in the variable. In this case, we're calling the Write-Host cmdlet to
output the Name and Id of each process to the screen.

Another type of loop you can use is Do. The Do loop allows you to loop
until a specific condition is met. There are two types of Do loops: Do ...
While and Do ... Until.

In a Do ... While loop, a block of script code is executed over and over
again as long as something is happening. For example, consider the
following script code snippet:
$counter = 0
Do
{
 Write-Host “Current Number: $counter”
 $counter++;
} While ($counter -lt 3)

If you were to run this code in a PowerShell script, the output would
read
Current Number: 0
Current Number: 1
Current Number: 2

The Do statement loops through the code inside the curly brackets for as
long as the condition specified in the While statement is valid. In this
example, the Do loop will keep going as long as the $counter variable is less
than 3 (-lt 3). After $counter reaches 3, the loop stops, and therefore only
the numbers 0, 1, and 2 are displayed. With a Do ... While loop, the code
inside the curly brackets is executed first, and then the condition
determining whether it should keep going is evaluated.

On the other hand, a Do ... Until loop processes the condition first. To
understand this, we'll turn the previous code into a Do ... Until loop:
$counter = 0
Do
{
 Write-Host “Current Number: $counter”
 $counter++;
} Until ($counter -gt 3)

This time, the Do loop will continue to process until $counter is greater
than 3. Before the code in the Do loop is processed even once, the
condition is evaluated to make sure $counter is still 3 or less. The
following is the output if this code is run in a script:
Current Number: 0
Current Number: 1
Current Number: 2
Current Number: 3

After the script displays that the current number is 3, $counter is
incremented to 4. This causes the condition ($counter -gt 3) to be met
because 4 is greater than 3, and the Do loop is no longer processed.

Conditionals
In addition to loops, you can use conditionals to make decisions inside
your scripts. One conditional that you'll probably use often is If ... Else.
The If statement tests whether something is true. If it is, it executes some
code. If not, the If statement can either end or test to see if something
else is true. For example, consider the following If statement:
$RunningProcesses = Get-Process
$RunningProcesses | ForEach-Object {
 $MemUsageMB = $_.PrivateMemorySize / 1024 / 1024
 If ($MemUsageMB -lt 50)
 {
 Write-Host $_.Name “: Using less than 50MB of memory”
 }
 Else
 {
 Write-Host $_.Name “: Using “ $MemUsageMB “MB of memory”
 }
}

If you execute this script, the output lists every running process and, if

it's using more than 50 MB of memory, displays the amount of memory
that the process is using. The ForEach-Object command loops through all the
processes. For each process, the If statement is evaluated. The If
statement checks to see whether the amount of memory is less than 50. If
so, it writes to the screen that the process is using less than 50 MB of
memory. If the process is using more than 50 MB, the Else statement is
executed, and instead, the script outputs to the screen the name of the
process and the amount of memory that it's using.

The -lt parameter indicates that the If statement is checking whether
$MemUsageMB is less than 50. In typical programming languages, this is
usually accomplished with the symbol <. Instead, PowerShell uses the
comparison operators listed in Table 1.6.

Table 1.6 PowerShell Comparison Operators
Comparison
Operator

Description Example

-eq Determines if expression1 is equal to expression2
[PS] C:\> “Active Directory” -eq

“AD”
 False

-ne Determines if expression1 isn't equal to expression2
[PS] C:\> “Active Directory” -ne

“AD”
 True

-gt Determines if expression1 is greater than expression2 [PS] C:\> 1000 -gt 50
 True

-ge Determines if expression1 is greater than or equal to expression2 [PS] C:\> 1000 -ge 1000
 True

-lt Determines if expression1 is less than expression2 [PS] C:\> 1000 -lt 50
 False

-le Determines if expression1 is less than or equal to expression2 [PS] C:\> 1000 -le 1000
 True

-like
Determines if expression1 is equal to expression2 using the wildcard
character (*)

[PS] C:\> “Active Directory”

-like “Act*”
 True

-notlike
Determines if expression1 isn't equal to expression2 using the wildcard
character (*)

[PS] C:\> “Active Directory”

-notlike “Ac*ry”
 False

-match Uses a regular expression to determine if expression1 matches
expression2

[PS] C:\> “Active Directory”

-match “[abc]”
 True

-notmatch Uses a regular expression to determine if expression1 doesn't match
expression2

[PS] C:\> “Active Directory”

-notmatch “[abc]”

 False

-contains Determines if a specific item is in a group of items

[PS] C:\> “AD DS”, “AD LDS”

-contains “AD DS”
 True

-notcontains Determines if a specific item isn't in a group of items

[PS] C:\> “AD DS”, “AD LDS”

-notcontains “AD FS”
 True

In addition to the If statement, you can use the Where-Object command.
Where-Object evaluates the objects that are piped into it and filters out
everything that doesn't meet the expression you set. For example, you can
use the following Where-Object command in a script to filter out all
processes that are using less than 50 MB of memory:
Get-Process | Where-Object { $_.PrivateMemorySize / 1024 / 1024 -gt 50 }
| ForEach-Object { Write-Host $_.Name }

In this command, the Where-Object cmdlet is passing through every
process that is using more than 50 MB of memory. The processes that are
passed through the filter are piped into the ForEach-Object cmdlet so they
can be further processed, and the information is displayed on the screen.

Accept Script Parameters
When you write a PowerShell script, there are times when you may want
the user to feed some information into the script. There are two ways to
handle this. The first way is to allow the user to edit the script and add
their information directly. If your script was signed, however, this will
break the signature. The second way is for your script to accept command
parameters.

Command parameters can be passed into the script when the user runs
the script's command in PowerShell. For example, the following
command uses a parameter to tell the Get-Process cmdlet which computer
to execute on:
Get-Process -ComputerName BAL-DC01

You'll be working with two types of parameters in your PowerShell
scripts: positional parameters and named parameters. Positional

parameters are used based on where they show up in the command. For
example, you could have a positional parameter specified that uses the
first parameter in the command as the -FirstName parameter. The user can
choose to run the script in one of the following ways. Both are
functionally equivalent:
MyScript.ps1 -FirstName Brenna
MyScript.ps1 Brenna

Use Named Parameters
Named parameters, on the other hand, require that the user indicates the
parameter name before specifying the value. If the FirstName parameter in
the previous example was a named parameter, the following command
would be invalid:
MyScript.ps1 Brenna

When configuring your scripts to accept parameters, you must include
some code at the beginning of your script consisting of the keyword param,
the type of parameter (for example, string), and the variable to which the
parameter will be passed. By default, the name of the variable becomes
the name of the parameter, but without the dollar sign that prefixes the
variable name. Consider the following parameter declaration in a script:
param([string]$FirstName)

This specifies that the script will accept a string parameter called -
FirstName that gets passed into the $FirstName variable inside the script. When
the script is run, the user executes it with the following command:
MyScript.ps1 -FirstName Brenna

Use Positional Parameters
When using a parameter as a positional parameter, you need to specify
the parameter's position in the parameter declaration. Expanding on the
previous example, the following command declares the FirstName
parameter as a positional parameter that is accepted as the first parameter
in the script's command:

param([Parameter(Position=0)][string]$FirstName)

When the user runs the script, the FirstName parameter can be specified as
either a positional or a named parameter. Because we included the name
of the parameter in addition to its position, both commands are valid.

Other Parameter Settings
You should be aware of a couple of other parameter settings. Optionally,
you can specify a default value for a parameter in case the user decides
not to pass a value in. The following parameter declaration assigns a
default value of Ben to the FirstName parameter:
param([string]$FirstName = “Ben”)

You can also decide whether a parameter is mandatory for the script or
whether it's optional. To declare a parameter as mandatory, set the
mandatory property to $true in the script's parameter declaration. The
following example sets the FirstName parameter as mandatory:
param([Parameter(Mandatory=$true)][string]$FirstName)

There are many other properties that you can set for a parameter as
well. Table 1.7 describes some of the common properties that you might
use when writing your PowerShell Scripts.

Table 1.7 Parameter Properties
Property Name Purpose

Mandatory A Boolean property that determines whether the parameter is mandatory in order for the
script to run.

Position An integer property that identifies the position in which a positional parameter should
appear.

ValueFromPipeline A Boolean property that indicates whether this parameter can accept an object that is
pipelined in from another script or cmdlet.

ValueFromPipelineByPropertyName

A Boolean property that indicates whether this parameter can accept data being pipelined in
from another command. The difference between this and the ValueFromPipeline property is
that this property specifies that the parameter accepts a single parameter from the pipelined
command. The ValueFromPipeline property applies to an entire object. If this property is
used, the parameter that is accepted from the pipelined command is the parameter that uses
the same name defined in this command.

HelpMessage
A String property that allows you to specify a help message for a mandatory parameter. If
the user runs the script and doesn't include the mandatory parameter, this help message is
displayed.

Use Functions in a Script
Functions give you the ability to take a block of script code and assign a
name to it. There are quite a few benefits to using functions inside your
scripts. First, functions allow you to organize scripts into executable
chunks, which makes the scripts easier to edit and troubleshoot. By
isolating a block of code into a function, you can make sure that
particular block of code works apart from the rest of your script code.
Another benefit of functions is that they sandbox the scope of your
scripts. A variable that is declared and used inside a function is only valid
to that function. And finally, functions let you write a block of code once
and call it as many times as you like, making your script code more
reusable. Functions are very helpful, so you'll notice that throughout this
book, we make generous use of them in our sample scripts.

Define Functions
To declare a block of code as a function, you can place the code between
opening and closing curly brackets and prefix it with the following
declaration:
Function <FunctionName> (<Parameters>)

For example, if you were to create a function called DisplayMessage that
displays “Hello, Ken!” it would look like the following:
Function DisplayMessage ()
{
 Write-Output “Hello, Ken!”
}

In this function, the message that is displayed is hard-coded. When you
call the DisplayMessage function, it will display the same message every
time. You can modify this behavior by configuring a parameter that the
user can pass in. There are two different ways to define parameters in
functions. If you've developed scripts or applications in other languages,
then you're probably familiar with defining parameters in functions using
the parentheses in function declarations. Here's an example of how this

might look:
Function DisplayMessage($name)
{
 Write-Output “Hello, $name!”
}

This function allows you to pass in the name that you want displayed in
the message. In the parentheses following the name of the function, we
specified a variable called $name. By doing this, we told the function that
the first parameter that we send to it will be kept in the $name variable. You
can also add additional variables for other parameters. When doing so,
you need to separate them inside the parentheses with commas.

You can also specify parameters on functions using the same method
that we described for using parameters in scripts. Refer to the section
“Accept Script Parameters” earlier in this chapter to learn how to use this
method. When you're defining parameters on functions with this method,
you follow the same process, but your parameter declaration happens on
the first line of the function rather than the first line of the script. For
example, the following function uses this method and is equivalent to the
DisplayMessage function that we defined earlier:
Function DisplayMessage
{
 param([string]$name)
 Write-Output “Hello, $name!”
}

Call Functions
If you want to use a function that you've defined in your script, you have
to call the function. To call the function, you simply need to type in the
name of the function, similar to how you might execute a cmdlet in
PowerShell. To call the DisplayMessage function, you can use the following
line in a script:
DisplayMessage “Brenna”

When this line of the script executes, the DisplayMessage function is called
and “Brenna” is passed in as a parameter. The function will then execute

and output the message “Hello, Brenna!” One important thing to note is
that in order to call a function, the function must be defined at the
beginning of the script. If you attempt to call a function before it has been
defined, you'll receive an error because the function doesn't exist yet.

The sample script in Listing 1.1 puts these concepts together so you can
better understand how to use a function. This script creates and calls the
DisplayMessage function used as an example throughout this section.

Listing 1.1: SayHello.ps1

File Name: SayHello.ps1
Description:
Demonstrates the use of functions by outputting a simple
hello message.
##
Function DisplayMessage_Paren($name)
{
 Write-Host “Hello, $name!”
}
Function DisplayMessage_Param
{
 param([string]$name)
 Write-Host “Hello, $name!”
}
Write-Host “Calling the function that uses parentheses...”
DisplayMessage_Paren “Lincoln”
Write-Host
Write-Host “Calling the function that uses param...”
DisplayMessage_Param “Nora”

Run a Script Outside of PowerShell
When you write a .ps1 script, you can run that script anytime you're in a
PowerShell session. But you can also run scripts without opening
PowerShell manually. The process is similar to running a batch file
outside of the command prompt. You can double-click the script, and
PowerShell will be automatically opened, your script will run, and then
PowerShell will close.

By default, when you double-click a PowerShell .ps1 script file, the file
opens in Notepad. You can use the following procedures to launch the file
in PowerShell:

1. Browse to the PowerShell .ps1 script file that you want to launch.
2. Right-click the file, and select Run With PowerShell from the drop-
down menu as shown in Figure 1.11.

Figure 1.11 Launching a PowerShell script outside of PowerShell

The PowerShell script will launch and run in PowerShell. PowerShell
will be closed when the script completes.

You can also change the file association to PowerShell instead of
Notepad. This will ensure that when you double-click the script, it opens
in PowerShell automatically.

To change the .ps1 file association, do the following:
1. Open the Control Panel, and run the Default Programs applet.
2. When the Default Programs applet launches, select the option

Associate A File Type Or Protocol With A Program.
3. Scroll down to the .ps1 file extension, and click it to select it. Click
the Change Program button above the list of file types, as shown in
Figure 1.12.
4. When the Open With dialog opens, click the Browse button to
locate the PowerShell executable. This executable is stored at
C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe. Select the
powershell.exe file, and click Open to choose it.
5. Click OK in the Open With dialog to choose Windows PowerShell
and set the file association.
6. Close the Default Programs applet and any remaining windows.
Now, when you double-click a .ps1 file, it will launch with PowerShell
instead of Notepad.

Figure 1.12 Changing the default program for PowerShell scripts

Schedule a Script to Run Automatically
Sometimes you'll want to create a script and have it run repeatedly at a
specified interval. Windows has a powerful Task Scheduler service that
allows you to set up programs to launch in a very flexible manner. If you
want to schedule a script to run at a later time or after a specified
interval, you can schedule the script to run with the Task Scheduler. In
order to execute a PowerShell script via Task Scheduler, you need to
associate your PowerShell .ps1 script file with the PowerShell.exe program or
have the scheduler execute the command PowerShell.exe MyScript.ps1 to
launch the script in the scheduled task.

There are multiple ways to schedule a task with the Windows Task
Scheduler. The easiest way is to use the Task Scheduler snap-in. In this
example, you'll use the Task Scheduler to create a task that does the
following things:

Runs a script every night that collects user statistics to determine
who has not logged on in the past 90 days. In this example, the script
is named GetLogonStats.ps1. This is a script that we created ourselves; it
isn't installed with Active Directory. In the fake script, the statistics
are saved in the file C:\Stats\LogonStats.log.
Emails the statistics file to the mail-enabled distribution group
called ADTeam@contoso.com.

To create the scheduled task, follow these steps:
1. Click the Start menu, and select Administrative Tools ⇒ Task
Scheduler. The Task Scheduler launches.
2. In the Action Pane on the right side of the Task Scheduler snap-in,
choose the option Create Task. The Create Task dialog box opens.
3. On the General tab, give the task a name, and choose the option Run
Whether User Is Logged On Or Not. Set the account that you want the
script to run under using the Change User Or Group button. Ensure
that the account running the script has the appropriate permissions.
Figure 1.13 shows these options.

mailto:ADTeam%40contoso.com

4. Click the Triggers tab, and click the New button to create a new
trigger for the task. Set this task to run every night at 1:00 a.m.
5. Click the Actions tab, and click the New button to create a new
action for this task to perform. In the Action drop-down list, choose
Start A Program. In the Program/script text box, type powershell.exe. In
the Add Arguments text box, type the location of the script:
C:\Scripts\GetLogonStats.ps1

These options are shown in Figure 1.14.
6. Click the OK button in the Edit Action dialog.
7. When you're back on the Action tab, click the New button to add
another action. In the New Action dialog select Send An E-mail from
the Action list. Fill out the options for the email message. Type
C:\Stats\LogonStats.log in the Attachment text box, and enter your SMTP
server name in the SMTP Server text box. Click OK to add the action.
8. Back in the Create Task dialog, click OK to create the task. You
may be prompted to enter the password for the account under which
the task will run.

Figure 1.13 Selecting the appropriate permissions for scheduling a script

Figure 1.14 Selecting the appropriate action for running a PowerShell
script

Understand How PowerShell and Active
Directory Work Together

Now that you have a basic understanding of PowerShell, let's take a
closer look at how Active Directory and PowerShell work together. First
we're going to look at the different ways you can interact with Active
Directory using PowerShell, and then we'll discuss what you have to do to
configure your environment so you can use the scripts and techniques
discussed in this book.

Interact with Active Directory Using PowerShell
Active Directory provides several different protocols and methods for
users to interact with it. Traditionally, when you used other scripting and
programming languages to interact with Active Directory, you had a
choice of techniques. In PowerShell, there are two ways to go about it:
using the Active Directory Services Interface or using the Active
Directory module. Depending on your Active Directory implementation,
you may be limited to only one of the two ways.

Use the Active Directory Services Interface
Prior to Windows Server 2008 R2, if you wanted to manage Active
Directory with PowerShell, you were limited to using the Active
Directory Services Interface (ADSI). ADSI is a set of Common Object
Model (COM) interfaces that allow you to programmatically work with
directory services such as Active Directory. ADSI is very flexible, and
once you get the hang of it, it's actually quite easy to work with.
However, there is a learning curve involved, and sometimes your results
can be inconsistent depending on the environment you're working in.

In Windows Server 2008 R2, you're provided with the Active Directory
module, which simplifies a lot of tasks for which you previously needed
ADSI. Even though there are many new Active Directory cmdlets, ADSI
will still be needed for more complex tasks that you'll want to perform.
Therefore, a solid understanding of how to work with ADSI is necessary.

When you work with ADSI to manage objects in Active Directory,
you'll be doing one of the following things: reading an object, updating an
object, creating an object, or deleting an object. All of ADSI's
functionality revolves around these operations.

Retrieve an Object
The first step to any ADSI task is to bind to the object that you're working
with. For example, if you want to read a user's logon name, then you first

need to bind to the user's object. You can use ADSI to bind to an object
using the following PowerShell command:
$user = [ADSI]”LDAP://cn=Nora Shea,cn=users,dc=contoso,dc=com”

In this example, the user variable is being populated with Nora Shea's
user object. In this command, the distinguished name of Nora's user
object (cn=Nora Shea,cn=users,dc=contoso,dc=com) is used to identify which object
to retrieve. By specifying LDAP:// at the beginning of the path, you tell
ADSI that the provider is an LDAP-capable directory service such as
Active Directory. It's important to note that this provider name is case
sensitive. If you used ldap:// instead of LDAP://, you would get an error. The
[ADSI] statement at the beginning of the command is called a type adapter.
Its purpose is to ensure that the object retrieved conforms to a specific
object type, which ensures consistency across the objects you work with.
By specifying ADSI as the type adapter, you're telling PowerShell that
the object is a System.DirectoryServices.DirectoryEntry object. This means the
object will have the properties and methods that all DirectoryEntry objects
have. In fact, if you pipe the user object into the Get-Member cmdlet, you can
retrieve a listing of the object's properties and methods:
PS C:\> $user | Get-Member

 TypeName: System.DirectoryServices.DirectoryEntry

Name MemberType Definition
---- ---------- ----------
ConvertDNWithBinaryToString CodeMethod static string ConvertDNWithBinaryToSt...
ConvertLargeIntegerToInt64 CodeMethod static long ConvertLargeIntegerToInt6...
accountExpires Property System.DirectoryServices.PropertyValu...
badPasswordTime Property System.DirectoryServices.PropertyValu...
badPwdCount Property System.DirectoryServices.PropertyValu...
cn Property System.DirectoryServices.PropertyValu...
codePage Property System.DirectoryServices.PropertyValu...
countryCode Property System.DirectoryServices.PropertyValu...
description Property System.DirectoryServices.PropertyValu...
distinguishedName Property System.DirectoryServices.PropertyValu...
dSCorePropagationData Property System.DirectoryServices.PropertyValu...
instanceType Property System.DirectoryServices.PropertyValu...
isCriticalSystemObject Property System.DirectoryServices.PropertyValu...
lastLogoff Property System.DirectoryServices.PropertyValu...
lastLogon Property System.DirectoryServices.PropertyValu...
lastLogonTimestamp Property System.DirectoryServices.PropertyValu...
logonCount Property System.DirectoryServices.PropertyValu...
logonHours Property System.DirectoryServices.PropertyValu...

memberOf Property System.DirectoryServices.PropertyValu...
name Property System.DirectoryServices.PropertyValu...
nTSecurityDescriptor Property System.DirectoryServices.PropertyValu...
objectCategory Property System.DirectoryServices.PropertyValu...
objectClass Property System.DirectoryServices.PropertyValu...
objectGUID Property System.DirectoryServices.PropertyValu...
objectSid Property System.DirectoryServices.PropertyValu...
primaryGroupID Property System.DirectoryServices.PropertyValu...
pwdLastSet Property System.DirectoryServices.PropertyValu...
sAMAccountName Property System.DirectoryServices.PropertyValu...
sAMAccountType Property System.DirectoryServices.PropertyValu...
userAccountControl Property System.DirectoryServices.PropertyValu...
uSNChanged Property System.DirectoryServices.PropertyValu...
uSNCreated Property System.DirectoryServices.PropertyValu...
whenChanged Property System.DirectoryServices.PropertyValu...
whenCreated Property System.DirectoryServices.PropertyValu...

You can work with any of those properties in PowerShell by
referencing the object, followed by a dot, followed by the property name.
For example, if you want to view the logon name of the user, run the
following command in PowerShell and press Enter:
PS C:\> $user.samAccountName

Change Object Properties
After you bind to the object, you have a copy of it in PowerShell. If you
were to change any of the properties, it would change your local copy.
For example, if you change the user's first name to Charlie, the change is
made on the PowerShell object but not in Active Directory:
PS C:\> $user.givenName = “Charlie”

In order to make the change take effect in Active Directory, you need to
call the CommitChanges method. When you call this method, PowerShell
commits the changes that you made on its local copy of the object into
Active Directory. The following command ensures that the user's object
is updated in Active Directory:
PS C:\> $user.CommitChanges()

The parentheses after the method name indicate that you're calling a
method rather than referencing a property. Properties only contain data
that you can read or write, but a method actually executes some code.
Because you know that the user object is being used in PowerShell as a

System.DirectoryServices.DirectoryEntry object, you can see a listing of all the
methods this object supports by looking at Microsoft's documentation
o n l i n e : http://msdn.microsoft.com/en-
us/library/system.directoryservices.directoryentry_methods.aspx.

Create New Objects
As shown earlier, when you want to work with an object via ADSI, you
first have to bind to it. But what do you do if the object doesn't exist yet?
Consider the situation where you want to create an object in Active
Directory. In this case, you'll need to bind to the parent of the object that
you creating. When creating a user, for example, the parent will either be
an organizational unit (OU) or a container. Assuming that you're creating
a user in the Users container, you bind using the following command:
PS C:\> $container = [ADSI]”LDAP://cn=users,dc=contoso,dc=com”

After you bind to the container, you can create the child object by
calling the Create method. For this example, you'll pass in the type of the
child object being created (user) and the common name of the object
(cn=Nora Shea):
PS C:\> $user = $container.Create(“user”, “cn=Nora Shea”)

In a manner similar to changing an object's properties, this user is only
created locally in PowerShell's memory. Therefore, you need to call the
same CommitChanges method as you did previously when you were modifying
a property. This instructs ADSI to write the changes into Active
Directory:
PS C:\> $user.CommitChanges()

If you were to now look in Active Directory, you would see Nora Shea's
account created and in a disabled state. You'll learn how to work with
users in more detail in Chapter 6, “Administering User and Group
Accounts.”

Delete Objects

http://msdn.microsoft.com/en-us/library/system.directoryservices.directoryentry_methods.aspx

Deleting an object requires an approach similar to creating an object. You
can't bind directly to the object that you're deleting because after you
delete it, it will be gone. Therefore, you need to bind to the parent of the
object. To delete the object that you just created, first bind to the Users
container:
PS C:\> $container = [ADSI]”LDAP://cn=users,dc=contoso,dc=com”

Then, call the Delete method and pass in the object type and the common
name of the object you're deleting:
PS C:\> $container.Delete(“user”, “cn=Nora Shea”)

As in the past few examples, this object is only deleted from the local
copy of the object in PowerShell. Therefore, you need to call the
CommitChanges method again to make the change in Active Directory:
PS C:\> $container.CommitChanges()

Beyond the Basics
You now have an overview of the basics of using ADSI to manage Active
Directory. Throughout the remainder of this book, you'll see many more
examples using both ADSI and the new Active Directory PowerShell
module. If you understand the basics as they're outlined here (working
with objects, properties, and methods) then you're well equipped to
handle some of the more advanced ADSI operations discussed later.

Use the Active Directory Module
The Active Directory module for PowerShell is a new feature of
Windows Server 2008 R2. As discussed earlier, prior to Windows Server
2008 R2, you had to use the ADSI interfaces for using PowerShell with
Active Directory. Windows Server 2008 R2 provides you with several
cmdlets for Active Directory administration. The Active Directory
module groups these cmdlets together into a package. In order to use the
Active Directory module, you have to install it on the computer from
which you're performing the administration and then load the module in

PowerShell.
The Active Directory module will only run on Windows Server 2008

R2 and Windows 7. The following editions of Windows are capable of
running the module:

Windows 7 (all versions)
Windows Server 2008 R2 Standard
Windows Server 2008 R2 Enterprise
Windows Server 2008 R2 Datacenter

It's important to understand that the Active Directory module can only
be used with domain controllers running the Active Directory Web
Services (ADWS) component or the Active Directory Management
Gateway (ADMG). Table 1.8 lists the domain controller operating system
requirements for each.

Table 1.8 Requirements for ADWS and ADMG
Component Domain Controller OS

Active Directory Web Services Windows Server 2008 R2

Active Directory Management Gateway
Windows Server 2003 SP2
Windows Server 2003 R2
Windows Server 2008 SP2

These components provide a web services interface to Active Directory.
The Active Directory PowerShell module uses SOAP-based web services
protocols to communicate with the domain controller. If you don't have
ADWS or ADMG installed on at least one domain controller in your
environment, then you won't be able to use the Active Directory
PowerShell module.

Load the Active Directory Module
After you've installed the Active Directory module, you can use the
cmdlets in PowerShell. To use the cmdlets, you'll need to import the
module. Use the following PowerShell command to import the Active
Directory module:
PS C:\> Import-Module ActiveDirectory

As mentioned earlier, the AD PowerShell module requires either a
Windows Server 2008 R2 domain controller or a Windows Server
2003/2008 domain controller running ADMG. If there are none available,
you'll receive an error when attempting to import the module stating that
a server with ADWS can't be found.

After the module loads successfully, you can begin using the Active
Directory cmdlets. To view a listing of the Active Directory cmdlets
added by the module, run the following PowerShell commands:
PS C:\> $module = Get-Module ActiveDirectory
PS C:\> $module.ExportedCmdlets | ft Key

Key

Add-ADComputerServiceAccount
Add-ADDomainControllerPasswordReplicationPolicy
Add-ADFineGrainedPasswordPolicySubject
Add-ADGroupMember
Add-ADPrincipalGroupMembership
Clear-ADAccountExpiration
Disable-ADAccount
Disable-ADOptionalFeature
Enable-ADAccount
Enable-ADOptionalFeature
Get-ADAccountAuthorizationGroup
Get-ADAccountResultantPasswordReplicationPolicy
Get-ADComputer
Get-ADComputerServiceAccount
Get-ADDefaultDomainPasswordPolicy
Get-ADDomain
Get-ADDomainController
Get-ADDomainControllerPasswordReplicationPolicy
Get-ADDomainControllerPasswordReplicationPolicyUsage
Get-ADFineGrainedPasswordPolicy
Get-ADFineGrainedPasswordPolicySubject
Get-ADForest
Get-ADGroup
Get-ADGroupMember
Get-ADObject
Get-ADOptionalFeature
Get-ADOrganizationalUnit
Get-ADPrincipalGroupMembership
Get-ADRootDSE
Get-ADServiceAccount
Get-ADUser
Remove-ADComputer
Remove-ADComputerServiceAccount
Remove-ADDomainControllerPasswordReplicationPolicy
Remove-ADFineGrainedPasswordPolicy

Remove-ADFineGrainedPasswordPolicySubject
Remove-ADGroup
Remove-ADGroupMember
Remove-ADObject
Remove-ADOrganizationalUnit
Remove-ADPrincipalGroupMembership
Remove-ADServiceAccount
Remove-ADUser
Rename-ADObject
Reset-ADServiceAccountPassword
Restore-ADObject
Search-ADAccount
Set-ADAccountControl
Set-ADAccountExpiration
Set-ADAccountPassword
Set-ADComputer
Set-ADDefaultDomainPasswordPolicy
Set-ADDomain
Set-ADDomainMode
Set-ADFineGrainedPasswordPolicy
Set-ADForest
Set-ADForestMode
Set-ADGroup
Set-ADObject
Set-ADOrganizationalUnit
Set-ADServiceAccount
Set-ADUser
Uninstall-ADServiceAccount
Unlock-ADAccount

Most of the cmdlets are self-explanatory. If you can't figure out what
some of them do by looking at the names, don't worry—you'll be working
with many of them throughout the remainder of this book.

Use the Active Directory Drive
In addition to providing the Active Directory cmdlets, the Active
Directory module for PowerShell also provides a new drive called the AD
drive. With the AD drive, you can navigate Active Directory in a manner
similar to the way you would navigate the file system on your hard drive.
To use the AD drive, first make sure the Active Directory module is
loaded, and then run the following command:
PS C:\> cd AD:

This changes the working context of your PowerShell session to the
Active Directory drive. The default location is the rootDSE, which is the

top-level entry in the domain controller itself. A listing of the objects in
the default path is as follows:
PS AD:\> dir

Name ObjectClass DistinguishedName
---- ----------- -----------------
contoso domainDNS DC=contoso,DC=com
Configuration configuration CN=Configuration,DC=contoso,DC=com
Schema dMD CN=Schema,CN=Configuration,DC=contoso,DC=com
DomainDnsZones domainDNS DC=DomainDnsZones,DC=contoso,DC=com
ForestDnsZones domainDNS DC=ForestDnsZones,DC=contoso,DC=com

From here, you can change the path just as you would change
directories in the filesystem. To do so, you can use the cd command
followed by the distinguished name of the path. To navigate to the
contoso.com domain, use the following command:
PS AD:\> cd “dc=contoso,dc=com”
PS AD:\dc=contoso,dc=com> dir

Name ObjectClass DistinguishedName
---- ----------- -----------------
Builtin builtinDomain CN=Builtin,DC=contoso,DC=com
Computers container CN=Computers,DC=contoso,DC=com
Contacts organizationalUnit OU=Contacts,DC=contoso,DC=com
Domain Controllers organizationalUnit OU=Domain Controllers, DC=contoso,DC=com
ForeignSecurityPr... container CN=ForeignSecurityPrincipals, DC=contoso,DC=com
Infrastructure infrastructureUpdate CN=Infrastructure,DC=contoso,DC=com
Jenny Smith contact CN=Jenny Smith,DC=contoso, DC=com
Jim Johnson user CN=Jim Johnson,DC=contoso, DC=com
Joe User contact CN=Joe User,DC=contoso,DC=com
LostAndFound lostAndFound CN=LostAndFound,DC=contoso, DC=com
Managed Service A... container CN=Managed Service Accounts, DC=contoso,DC=com
NTDS Quotas msDS-QuotaContainer CN=NTDS Quotas,DC=contoso, DC=com
Program Data container CN=Program Data,DC=contoso, DC=com
Sara Smith user CN=Sara Smith,DC=contoso, DC=com
Sara Smith2 user CN=Sara Smith2,DC=contoso, DC=com
Sara Smith3 user CN=Sara Smith3,DC=contoso, DC=com
System container CN=System,DC=contoso,DC=com
temp organizationalUnit OU=temp,DC=contoso,DC=com
Template user CN=Template,DC=contoso,DC=com
Users container CN=Users,DC=contoso,DC=com

You'll be using the AD drive throughout the remainder of this book, so
you may want to take a few minutes now and become familiar with
navigating around the AD drive in PowerShell.

Use Windows Management Instrumentation

When you automate Active Directory with PowerShell, you'll use one
additional technique: the Windows Management Instrumentation (WMI)
interface. WMI isn't used for interacting with Active Directory per se;
rather, it's used for interacting with the Windows operating system. This
is important because you may have to do some things to Windows that
affect its interaction with Active Directory, even though you're not
touching Active Directory itself. For example, in Chapter 5, “Configuring
Active Directory Dependencies,” we'll look at how to automate DNS. The
majority of the ways you'll interact with DNS will use WMI.

WMI Basics
WMI provides an object-oriented way to manage Windows. WMI uses
the concept of classes, which define different types of objects that WMI
can interact with. Similar to how .NET classes work, WMI provides
methods (pieces of executable code) and properties.

Windows provides a series of classes out of the box for interacting with
core Windows components. For example, the Win32_Service class provides a
way to interact with Windows services. The methods in the class allow
you to do things like start or stop a service, while the properties define
the different attributes of the service, such as its name.

Several classes are packaged together to form namespaces. Namespaces
can be provided by both Microsoft applications and third-party
applications. This speaks to the extensibility of WMI and is one of the
reasons why WMI is so widely used not only in PowerShell scripting, but
in other scripting languages as well. The Windows operating system
places its core classes in the namespace root\cimv2.

WMI also uses instances. An instance is an instantiation (an actual
object) of a class. For example, if you have 20 services running on your
computer, then you have 20 instances of the Win32_Service class. You can
connect to each instance (each service) and modify it or perform one of
its methods.

Another thing you should know about WMI is that there is a query
language built around it. You can use this WMI Query Language (WQL)
to search for WMI instances. Without WQL, you would have to list the
instances of a class and then enumerate through each instance to find the
one you want. With WQL, you can search for that particular instance and
work with it directly.

WMI PowerShell Cmdlets
PowerShell can interact with WMI in a couple of different ways. Similar
to how PowerShell uses ADSI to interact with Active Directory, there is a
WMI provider. This allows you to use the following method of
interacting with WMI:
$objReg = [WMICLASS]”\\.\root\cimv2:StdRegProv”

This example connects to the root\cimv2 namespace and uses the class
StdRegProv, which provides access to the system's registry.

In addition to using the WMI provider, PowerShell provides a series of
cmdlets you can use to interact with WMI. You can view these cmdlets
by running the following command:
PS C:\> get-command -Noun *wmi*

CommandType Name Definition
----------- ---- ----------
Cmdlet Get-WmiObject Get-WmiObject [-Class] ...
Cmdlet Invoke-WmiMethod Invoke-WmiMethod [-Clas...
Cmdlet Register-WmiEvent Register-WmiEvent [-Cla...
Cmdlet Remove-WmiObject Remove-WmiObject [-Clas...
Cmdlet Set-WmiInstance Set-WmiInstance [-Class...

The two WMI cmdlets you'll be primarily working with in this book are
Get-WmiObject and Set-WmiObject. These cmdlets are respectively used for
retrieving WMI information and configuring WMI information. We'll be
discussing how to use these cmdlets throughout the remainder of this
book.

Prepare Your Environment for the Active

Directory Module
Before you can begin using the Active Directory module to manage
Active Directory, you'll need to take some steps to prepare the
environment. Depending on your current Active Directory configuration,
you may need to make changes on a domain controller in your forest.

Configure Domain Controllers
As mentioned in the previous section, the Active Directory module
requires that at least one domain controller be running ADWS or ADMG.

Install Active Directory Web Services
ADWS will run only on your Windows Server 2008 R2 domain
controllers. When you promote a Windows Server 2008 R2 member
server to a domain controller, the ADWS component is automatically
installed and enabled. One situation you may encounter is that if there is
a firewall between your domain controller and the computer from which
you're running the Active Directory PowerShell module, the module may
not be able to connect to ADWS. To fix this, you should ensure that you
allow traffic on TCP port 9389 to communicate with the domain
controller.

Install the Active Directory Management Gateway
If you don't have a Windows Server 2008 R2 domain controller, you can
still use the Active Directory PowerShell module by installing ADMG on
one of your domain controllers. ADMG is supported on the following
domain controller operating systems:

Windows Server 2003 SP2
Windows Server 2003 R2
Windows Server 2008 SP2

As a prerequisite, the ADMG requires the .NET Framework 3.5 Service

Pack 1. You'll need to install it before you can install ADMG. Follow
these steps to install ADMG on a legacy domain controller:

1. Download the appropriate ADMG installation package from the
Microsoft website at the following URL:
www.microsoft.com/downloads/en/details.aspx?displaylang=en&FamilyID=008940c6-0296-

4597-be3e-1d24c1cf0dda.
2. Launch the installation package that you downloaded to start the
installation.
3. On the opening screen of the installation wizard, click the Next
button.
4. On the License Agreement screen, read the license and then choose
I Agree (assuming that you agree with the terms of the license). Click
Next to continue.
5. ADMG will be installed. After the installation is finished, click the
Finish button.
6. You can verify that ADMG was installed by opening the Services
MMC (Microsoft Management Console) snap-in and checking to see
that the ADWS service is installed and running, as shown in Figure
1.15.

Figure 1.15 ADWS Running on a Windows 2003 domain controller

http://www.microsoft.com/downloads/en/details.aspx?displaylang%3Den%26FamilyID%3D008940c6-0296-4597-be3e-1d24c1cf0dda

Use Windows 7 or Windows Server 2008 R2 for
Administration
When you promote a Windows Server 2008 R2 server to a domain
controller, the Active Directory module is installed by default. Therefore,
you can use the Active Directory PowerShell module on the domain
controller without additional configuration. However, if you want to use
PowerShell to administer Active Directory with the Active Directory
module from Windows Server 2008 R2 member servers or Windows 7
workstations, you'll need to install the modules separately.

The Active Directory module is included in the Remote Server
Administration Tools (RSAT). In Windows Server 2008 R2, this doesn't
require a separate download. You can install the Active Directory module

by running the following series of commands in PowerShell:
PS C:\> Import-Module ServerManager
PS C:\> Add-WindowsFeature RSAT-AD-PowerShell

One of the prerequisites for using the Active Directory module is
version 3.5.1 of the .NET Framework. Therefore, if you don't already
have the .NET Framework 3.5.1 installed, it will be installed
automatically when the Active Directory module is installed.

Windows 7 doesn't include the RSAT feature by default. Therefore,
you'll need to download and install these tools before you can enable the
Active Directory module on Windows 7. You can download RSAT from
Microsoft's website at the following URL:
www.microsoft.com/downloads/en/details.aspx?FamilyID=7d2f6ad7-656b-4313-a005-

4e344e43997d.
After you install RSAT, you can use the following steps to install the

Active Directory module in Windows 7:
1. Click the Start menu, and select Control Panel.
2. In the Control Panel, click Programs and then Turn Windows
Features On Or Off. The Windows Features dialog opens.
3. In the Windows Features dialog, browse to Remote Server
Administration Tools ⇒ Role Administration Tools ⇒ AD DS And
AD LDS Tools. Select the Active Directory Module For Windows
PowerShell check box, and then click OK.

Use an Older Client for Administration
The Active Directory module can only be installed on Windows 7 and
Windows Server 2008 R2. However, because of the remoting capabilities
in PowerShell v2, you can use an older client operating system to manage
Active Directory with the Active Directory PowerShell module.

To accomplish this, you'll still need a computer in the environment
with the Active Directory PowerShell module installed. On your older
client machine, you'll need to install PowerShell 2.0 and Windows
Remote Management 2.0, which you can download from Microsoft's

http://www.microsoft.com/downloads/en/details.aspx?FamilyID%3D7d2f6ad7-656b-4313-a005-4e344e43997d

website at the following URL: http://support.microsoft.com/kb/968929. Establish
a remote PowerShell session between your older client and the server that
has the Active Directory module installed, and the Active Directory
module cmdlets will be proxied on your client. This means you'll type the
command into your client, but it will really execute on the computer with
the Active Directory module.

Follow these steps to administer Active Directory with an older client:
1. Create a remote session from your client by executing the following
command:
$session = New-PSSession -ComputerName MgtServer01

2. Import the Active Directory module into the remote session:
Invoke-Command { Import-Module ActiveDirectory } -Session
$session

3. Export the AD cmdlets from the remote session into a local copy of
the module. The following example references all the cmdlets that
contain -AD in the name:
Export-PSSession -Session $session -CommandName *-AD*
-OutputModule LocalADModule -AllowClobber

4. Import the local module that you just created:
Import-Module LocalADModule

After you follow these steps, you should be able to execute the Active
Directory cmdlets from your older Windows client. Remember, though,
that the cmdlet itself will really be run from the machine with which you
establish the remote session.

http://support.microsoft.com/kb/968929

Chapter 2

Managing Domains and Forests

IN THIS CHAPTER, YOU WILL LEARN TO:
MANAGE AD DOMAINS

Add and Remove Active Directory Domains
Manage Domain Settings

MANAGE ACTIVE DIRECTORY TRUSTS
Create and Remove Active Directory Trusts
Manage Active Directory Trusts

Determining the number of Active Directory domains and forests to be
created is typically performed early on in the AD design process, based
on the number of users and physical locations within an environment as
well as the physical and logical security requirements of the organization.
When you install the first Active Directory domain controller (DC) in an
environment, you're creating a new AD domain within a new AD forest.
Additional domains and forests may be added to the environment during
the initial AD deployment, or later on as part of a merger, an acquisition,
or a divestiture.

Manage AD Domains
When planning your AD environment, the number of forests and domains
you select will be based on the security and administrative requirements
of your organization. Within AD, the AD forest constitutes the security
boundary within AD—AD administrators from one forest can't exert

administrative privileges within a separate AD forest (unless a trust
relationship is in place). Conversely, if you have multiple domains within
a single AD forest, the Enterprise Admins group in the forest root domain
has default administrative privileges across the entire forest, including all
child domains. In fact, Domain Admins in any child domains can
potentially (although not by default) escalate their privileges so that they
can access any domain in the forest, including the forest root domain.

The Forest as the Security Boundary
There are numerous misconceptions on the Internet about this matter, because when
AD was first released in Windows 2000, the initial documentation from Microsoft
indicated that the domain, rather than the forest, was the AD security boundary. This
has been proven not to be the case because of the potential escalation of privileges;
when determining the security boundary for your AD environment, always
remember that it's the forest that is the security boundary.

Within a single forest, you may still wish to configure multiple
domains for purposes of administrative separation. The AD domain is the
fundamental unit of administration within AD—all users, groups, and
other security principals are created within the domain-naming context
and are replicated only to other DCs within the same domain: an AD user,
group, or other security principal may only exist within a single domain
at any one time. (Other data regarding the AD schema and other
configuration information such as IP addressing and site information is
replicated forest-wide.) In a multidomain environment, the first domain
that you install in the forest will be the forest root domain ; this domain
contains such built-in security groups as the Enterprise Admins and
Schema Admins groups. Although you may use tools like the Active
Directory Migration Tool (ADMT) to restructure or consolidate an AD
forest after it has been created, the forest root domain must always
remain the forest root domain—the only way to configure a “new” forest
root domain within an AD forest is to decommission the entire forest and
begin again from scratch.

In a multidomain environment, you may have one or more domain trees
that follow a contiguous naming convention: a forest root domain called
contoso.com with two child domains called west.contoso.com and east.contoso.com,
for example, as shown in Figure 2.1.

Figure 2.1 A multidomain forest

You can also configure multiple domain trees that use noncontiguous
naming conventions. You may have a domain tree called contoso.com and a
second domain tree within the same forest called adatum.com, as shown in
Figure 2.2.

Figure 2.2 Multiple domain trees in a forest

Whatever the structure of your forest, if you have multiple trees or
domains in your forest, then each domain in the forest has a two-way,
transitive trust relationship with every other domain in the forest. This
means that, by default, a user in any domain in the forest may
authenticate to a resource in any other domain in the forest. (Obviously,
you may still lock down access to specific resources through the use of
Access Control Lists [ACLs].) This transitivity is created as follows:

When a new child domain is added to an existing domain tree, a two-
way transitive trust is created between the child domain and its
parent domain. This works recursively, so that a “grandchild”
domain has a two-way trust with the child domain, which has a two-
way trust with the root domain.
When a new domain tree is added to an existing forest, a two-way
transitive trust is created between the root domain of the new tree
and the root domain of every other tree in the forest.

Through the use of these two trust configurations, each new domain
that is added to an AD forest has an automatic trust with every other
domain in the forest, as shown in Figure 2.3.

Figure 2.3 The default trust configuration

If your AD design extends to multiple forests, or if you need to expand
your AD environment to extend to other organizations, you'll sometimes
need to create trust relationships between one AD domain or forest and
others. Depending on the nature of the environments, a number of
different types of trusts may be created to meet the needs of the scenario.
If two separate AD forests are running at least Windows Server 2003, you
can create a forest trust between the two forests. A forest trust takes the
two-way transitive trust web within each forest and extends it across the
trust relationship, so that each domain in ForestA has a two-way
transitive trust with each domain in ForestB, and vice versa, as shown in
Figure 2.4.

Figure 2.4 Cross-forest trusts

If this level of trust transitivity isn't desired, you can instead create an
external trust between one specific domain and another specific domain;
the trust relationship won't extend to any other domains in either forest,
as shown in Figure 2.5.

Figure 2.5 External trust

You can also create a realm trust between an AD domain and a third-
party realm based on the MIT Kerberos protocol, or a shortcut trust to
improve the efficiency of cross-domain access within a single AD forest.

Within an AD environment, the AD domain is the primary unit of
administration—the domain represents a single cohesive unit of
administration that can correspond to a geographical area, a business unit,
or an entire company. Although a significant number of organizations
have deployed their AD environments as a single domain within a single
forest, you also have the option to deploy multiple domains or domain
trees within a single forest, or even multiple separate forests.

Add and Remove Active Directory Domains
Whether you're creating a brand-new domain in a brand-new forest or
creating a new domain or domain tree within an existing forest, you
create a new AD domain by promoting a single server as the first DC in
the new domain; this may be automated by using the dcpromo.exe command-
line tool.

The dcpromo.exe tool contains a significant number of command-line
switches that you can use to customize its behavior. In this section, you'll
see examples using many of them. The complete list of available
parameters for dcpromo.exe in Windows Server 2008 R2 is as follows:

AllowDomainControllerReinstall specifies whether to install the DC even if
another DC computer account with the same name is detected.
AllowDomainReinstall specifies whether an existing domain may be re-
created when promoting this DC.
ApplicationPartitionsToReplicate specifies which partitions should be
replicated.
ChildName specifies the single-label DNS name of the child domain if
the promotion is creating a child domain.
ConfirmGc specifies whether the DC should be configured as a global
catalog server.
CreateDNSDelegation specifies whether to create a DNS delegation for the
new DNS server that you're creating.
CriticalReplicationOnly specifies whether only critical replication

should be performed prior to the final reboot of the promotion
process.
DatabasePath specifies the filesystem path that should contain the AD
database.
DelegatedAdmin specifies the name of the delegated administrator or
group when installing a read-only domain controller (RODC).
DNSDelegationPassword specifies the password used to create a DNS
delegation.
DNSDelegationUserName specifies the username used to create a DNS
delegation.
DNSOnNetwork specifies whether DNS is available elsewhere on the
network, or if DNS will be installed on the DC itself to be used for
name resolution.
DomainLevel specifies the domain functional level of the new AD
domain.
DomainNetBiosName specifies the NetBIOS name of a newly created
domain.
ForestLevel specifies the forest functional level of a newly created
forest.
InstallDNS specifies whether the DNS server service should be
installed on this DC.
LogPath specifies the filesystem path that should contain the AD log
files.
NewDomain specifies whether you're creating a new forest, a new
domain tree within a forest, or a new child domain within an existing
domain tree.
NewDomainDNSName specifies the fully qualified domain name (FQDN) of
a newly created domain.
ParentDomainDNSName, if creating a child domain, specifies the DNS name
of the new child domain's parent domain.
Password specifies the password of the account credentials to be used

to install the DC.
PasswordReplicationAllowed specifies the names of security principals
whose passwords may be replicated to an RODC.
PasswordReplicationDenied specifies the names of security principals
whose passwords may not be replicated to an RODC.
RebootOnCompletion specifies whether the DC should reboot on
completion of the dcpromo operation: {<Yes> | No}.
RebootOnSuccess specifies that the DC should reboot at the end of the
dcpromo operation only if the operation completes successfully.
ReplicaDomainDNSName, if installing an additional DC in an existing
domain, specifies the DNS name of the AD domain in question.
ReplicaOrNewDomain specifies whether you're creating a new AD domain
or adding a new DC to an existing domain.
ReplicationSourceDC, if installing an additional DC in an existing
domain, specifies the name of the DC from which information will
be replicated.
ReplicationSourcePath specifies the location of Install From Media
(IFM) files, if these are being used.
SafeModeAdminPassword specifies the password to be used when the DC is
started in Directory Services Restore Mode.
SiteName specifies the name of the site where the new DC should be
installed (the site name must already exist within AD).
SkipAutoConfigDns skips the automatic configuration of DNS if the DNS
service has already been installed on the server.
SysVolPath specifies the filesystem path used to store the SYSVOL
directory.
UserDomain specifies the domain of the user credentials being used to
install the DC.
UserName specifies the username of the credentials being used to install
the DC.

Creating a New Domain
Dcpromo.exe possesses a significant number of command-line options that
allow you to customize the behavior of the domain-creation process to fit
your needs. You can enter the necessary parameters on the same
command line as dcpromo, or you may record the parameters into a separate
text file for reuse in subsequent domain promotions.

In our first example, you see the command-line switches necessary to
create a brand-new AD forest with a single domain called contoso.com. The
new domain has a domain NetBIOS name of CONTOSO, with a forest
and domain functional level of Windows Server 2008 R2 (denoted by the
number 4). The available settings for domain and forest functional levels
are as follows:

Windows2000: 0
Windows Server 2003 Interim: 1
Windows Server 2003: 2
Windows Server 2008: 3
Windows Server 2008 R2: 4

You can see that the AD database, log files, and SYSVOL directories have
been separated onto three separate drives; the AD database is stored at
d:\ntds, the AD logs are stored at e:\ntdslogs, and SYSVOL is stored at f:\sysvol.
Also notice that the DNS Server service will be installed on this DC
during the dcpromo process:
dcpromo /unattend /replicaOrNewDomain:domain /NewDomain:Forest
/NewDomainDNSName:contoso.com /DomainNetbiosName:contoso /
InstallDns:yes /databasePath:”d:\ntds” /logPath:”e:\ntdslogs” /
sysvolpath:”f:\sysvol” /safeModeAdminPassword:DS%sdr5!@V8d3 /
forestLevel:4 /domainLevel:4 /rebootOnCompletion:yes

The next example creates a new child domain within an existing AD
forest. The name of the existing forest is contoso.com, and the new domain
being created is called corp.contoso.com, with a domain NetBIOS name of
corp. Notice again that the AD database, log files, and SYSVOL directories
are separated onto three separate drives, and the domain functional level

of the new domain is Windows Server 2008 R2, denoted by the number 4:
dcpromo /unattend /adv /replicaOrNewDomain:domain /NewDomain:
child /ParentDomainDNSName:contoso.com /newDomainDnsName:corp
.contoso.com /childName:corp /DomainNetbiosName:corp /
InstallDns:yes /databasePath:”d:\ntds” /logPath:”e:\ntdslogs”
/sysvolpath:”f:\sysvol” /safeModeAdminPassword:FDˆ#cdsr1
2CSD%sd /domainLevel:4 /ReplicationSourcePath:g:\ntds\ /
rebootOnCompletion:yes

Listing 2.1 uses the /unattend:<filename> switch to force dcpromo to reference
an external text file for its command-line parameters. In this case, you're
creating a new domain tree within an existing AD forest. The format of
the answer file begins with [DCINSTALL] in Listing 2.1.

Listing 2.1: Creating a New Domain Tree Using an unattend.txt File

dcpromo /unattend:answer.txt

[DCINSTALL]
UserName=administrator
UserDomain=WORKGROUP
Password=P@ssw0rd1
replicaOrNewDomain=domain
newDomain=tree
ParentDomainDNSName=contoso.com
NewDomainDnsName=contosocorp.com
DomainNetbiosName=contosocorp
InstallDns=yes
databasePath=”d:\ntds”
logPath=”e:\ntdslogs”
sysvolPath=”f:\sysvol”
safeModeAdminPassword=FSD#%$Tfe23
domainLevel=4
rebootOnCompletion=yes

Decommissioning a Domain
You can also customize the dcpromo.exe command-line tool to
decommission an existing AD domain. In order to decommission an AD
domain using the syntax shown in the following example, you must first
demote any other DCs in the domain:
dcpromo /unattend /UserName:contosoadmin /UserDomain:contoso.com
/Password:#$%CVSER$% /AdministratorPassword:%#Q@DCed23
/AdministratorPassword:%#Q@DCed23 /DemoteFSMO:Yes /IsLastDc
InDomain:Yes /IgnoreIsLastDcInDomainMismatch:Yes /IgnoreIsLastDN

SServerForZone:Yes /RebootOnCompletion:Yes

When demoting an existing DC, dcpromo performs a number of safety
checks before allowing the demotion to continue. One of these checks is
to determine whether the DC in question holds one or more Flexible
Single Master of Operation (FSMO) roles for the domain or forest. If you
don't specify the /demoteFSMO switch with a value of Yes, you'll be prompted
by dcpromo as to whether you wish to continue the demotion. You can also
see the /IsLastDcInDomain switch, which denotes that this is the last DC in
this domain and that this operation will decommission this domain.

In some cases, you may not be able to demote all other DCs before
decommissioning the domain. The /IgnoreIsLastDcInDomainMismatch switch
allows the domain decommission to continue even if the AD database
still contains references to remaining DCs. Likewise, the
/IgnoreIsLastDNSServerForZone switch allows the operation to continue even if
this DC is the last holder of a DNS zone such as DomainDNSZones or
ForestDNSZones.

Upgrading an Active Directory Domain
Whenever a new version of the Windows operating system is released,
administrators of existing AD forests need to plan how they will
introduce the new OS into their environment. The process of upgrading
from one OS to the next has remained largely the same when upgrading
from Windows 2000 to Windows Server 2003, from Windows Server
2003 (including 2003 R2) to Windows Server 2008, and most recently
from Windows Server 2008 to Windows Server 2008 R2.

Broadly speaking, the steps needed to upgrade an existing AD domain
to a new version of the Windows operating system are as follows:

1. Assign appropriate credentials to the users who will be preparing
the forest and domain for the upgrade.
2. Introduce a member server running the new version of the Windows
OS.
3. Inventory existing DCs, and determine whether each DC may be

upgraded in place, or if it needs to be reinstalled or replaced. (A
Windows 2000 DC can't be upgraded directly to Windows Server
2008, for example.) Determine whether the existing hardware of each
DC is capable of running the new version of the operating system, or
if upgrades are required to RAM, hard drive space, and so on.
4. Create a test plan for your domain upgrade, including steps needed
to recover from any failures. Ensure that you have tested and verified
backups of your AD in place.
5. Upgrade your AD schema by running adprep.exe /forestprep from the
DC that holds the Schema Master FSMO for the forest.
6. Prepare each domain by running adprep /domainprep /gpprep.
7. If you plan to install RODCs, run adprep /rodcprep in each domain that
will contain an RODC.
8. If the domain was upgraded from Windows 2000, run the
GrantPermissionsOnAllGPOs.wsf script. This resolves a backward-
compatibility issue in which the Enterprise Domain Controllers
security group doesn't have read access to the Group Policy Objects
(GPOs) in each domain.

The following example shows the commands described in this
checklist, for the contoso.com domain:
adprep /forestprep
adprep /domainprep /gpprep
adprep /rodcprep
cscript GrantPermissionOnAllGPOs.wsf “Enterprise Domain
Controllers” /permission:read /domain:contoso.com /Replace

Cleaning Up Old Domain Controllers
You've already seen the process of demoting DCs in the
“Decommissioning a Domain” section, because decommissioning a
domain is done by demoting the last DC in that domain. If your aim is to
decommission a single DC without decommissioning the entire domain,
you can use a much simpler syntax for dcpromo, as shown in the following
example. The most interesting syntax here is the /DemoteFSMO switch, which

allows a DC to be automatically demoted without prompting the
administrator, even if that DC holds one or more FSMO roles for the
domain or forest:
dcpromo /unattend /UserName:contosoadmin /UserDomain:contoso
.com /Password:#$%CVSER$% /AdministratorPassword:%#Q@
DCed23/AdministratorPassword:%#Q@DCed23 /DemoteFSMO:Yes /
RebootOnCompletion:Yes

Manage Domain Settings
After an AD domain has been created, a number of domain- and forest-
wide settings need to be managed on an ongoing basis. For example, in
order to enable additional functionality in a domain or forest, you need to
raise the domain or forest functional level to reflect the OS level of its
DCs: a forest whose DCs are all running the latest version of the
Windows OS can support new functionality because it no longer needs to
maintain backward compatibility with legacy DCs.

It's also critical to configure an authoritative time source to ensure time
synchronization across all computers within an AD forest. In large or
complex environments, you may also need to configure additional UPN
suffixes for use across your AD forest, or modify the default tombstone
lifetime to manage how AD handles the deletion of objects.

Retrieving the Domain and Forest Functional
Level
Within a single AD domain, it's possible to have DCs running many
different versions of the Windows Server OS. Reflecting this, AD
domains and forests have functional levels that indicate which OS
versions are running on the DCs in the domain or forest. The functional
level of a domain or forest dictates which advanced features are available
in that domain or forest—a higher functional level allows additional
functionality to be enabled because there is less need for backward
compatibility with older OSs. This allows administrators to perform

phased upgrades of DCs when a new version of the Windows OS becomes
available, rather than requiring an all-or-nothing approach.

It's important to note that changing the domain or forest functional
level requires positive action on the part of the administrator, because
raising the functional level prevents additional downlevel DCs from
being added to a domain or forest. For example, even if all DCs in a
domain have been upgraded from Windows Server 2003 to Windows
Server 2008, changing the domain functional level to Windows Server
2008 requires additional configuration; the functional level doesn't
change automatically.

Currently, six domain functional levels are available in AD:
Windows 2000 mixed: Allows all versions of AD DCs, as well as
Windows NT 4.0 DCs. This is the default domain functional level in
Windows Server 2003.
Windows 2000 native: Allows all versions of AD DCs, but no
Windows NT DCs.
Windows Server 2003 interim: Allows only Windows NT 4 and
Windows Server 2003 DCs. This functional level is selected
automatically when you're upgrading a Windows NT 4 domain to
Windows Server 2003. You can't specify this functional level
manually.
Windows Server 2003: Allows Windows Server 2003 or higher DCs
only. No Windows NT or Windows 2000 DCs may be added to a
domain at this functional level.
Windows Server 2008: Allows only Windows Server 2008 and
Windows Server 2008 R2 DCs. No Windows NT, Windows 2000, or
Windows Server 2003 DCs may be added to a domain at this
functional level.
Windows Server 2008 R2: Allows only Windows Server 2008 R2
DCs. No downlevel DCs of any kind may be added to a domain at
this functional level.

Similarly, five forest functional levels are currently available:
Windows 2000: Allows DCs of any OS within the forest. This is the
default forest functional level for Windows Server 2003 and
Windows Server 2008.
Windows Server 2003 interim: Similar to the domain functional
level, allows only Windows NT 4 and Windows Server 2003 DCs
within the forest. This functional level is selected automatically
when upgrading a Windows NT 4 domain to Windows Server 2003;
you can't specify this functional level manually.
Windows Server 2003: Allows only Windows Server 2003 or higher
DCs within the forest. All domains in the forest must be running at
least the Windows Server 2003 DFL. This is the default forest
functional level for Windows Server 2008 R2 forests.
Windows Server 2008: Allows only Windows Server 2008 or higher
DCs within the forest. All domains in the forest must be running at
least the Windows Server 2008 DFL.
Windows Server 2008 R2: Allows only Windows Server 2008 R2
DCs within the forest. All domains in the forest must be running the
Windows Server 2008 R2 DFL.

You can obtain the domain and forest functional levels for a particular
domain or forest by querying a DC's RootDSE object; Domain Functional
Level and Forest Functional Level information is stored as properties on
this object. Querying RootDSE is a convenient way to query for active
directory information without hard-coding the name of a specific DC. Get-
ADRootDSE queries the RootDSE object of whichever DC the user is currently
connected to.

You can query RootDSE for properties such as the following:
ConfigurationNamingContext

CurrentTime

DefaultNamingContext

DnsHostName

DomainControllerFunctionality

DsServiceName

HighestCommittedUSN

IsGlobalCatalogReady

IsSynchronized

LdapServiceName

NamingContextsRoot

DomainNamingContext

SchemaNamingContext

ServerName

SubschemaSubentry

SupportedCapabilities

SupportedControl

SupportedLDAPPolicies

SupportedLDAPVersion

SupportedRootDSEOperations

SupportedSASLMechanisms

The example in this section demonstrates the Get-ADRootDSE PowerShell
cmdlet, which allows you to quickly obtain the domainFunctionality and
forestFunctionality properties.
Get-ADRootDSE –Server dc1.contoso.com | Format-Table
defaultNamingContext, domainFunctionality, forestFunctionality

Changing the Domain and Forest Functional Level
When a particular domain or forest meets the requirements of a new
domain or forest functional level, you need to issue a specific command
to change the functional level to its new value. Before AD will commit
the new functional level, it performs safety checks to ensure that the new
functional level is supported. In the case of a domain functional level, all
DCs in the domain are enumerated to confirm that they're running the
appropriate OS level; for upgrades to the forest functional level, all

domains in the forest are checked to ensure that they're running the
appropriate domain functional levels. Only after these safety checks have
passed will the functional level be committed.

In this section, you'll use Set-ADDomainMode to upgrade the domain
functional level for a specific domain. You can specify the domain to be
upgraded using the –Identity parameter, which can take one of the
following types of arguments:

Fully qualified domain name (FQDN), such as corp.contoso.com
Distinguished name (DN), such as dc=corp,dc=contoso,dc=com
Domain NetBIOS name, such as CORP
Domain GUID (objectGUID), such as 599c3d2e-f72d-4d20-8a88-
030d99495f20
Domain Security Identifier (objectSid), such as S-1-5-21-3165297888-
301567370

You can specify any of the following values for the –DomainMode
parameter:

Windows2000Domain or 0
Windows2003InterimDomain or 1
Windows2003Domain or 2
Windows2008Domain or 3
Windows2008R2Domain or 4

Mixing Functional Levels
It's possible to have a domain with a higher domain functional level than the forest
functional level, but never the reverse. So the contoso.com forest may be at the
Windows Server 2003 forest functional level while the east.contoso.com domain has
been raised to the Windows Server 2008 domain functional level. However, it isn't
possible for the contoso.com forest to be configured at the Windows Server 2008
functional level if any of the domains within the forest are running at the Windows
Server 2003 functional level.

I n Figure 2.6, you can see examples of domain and forest functional

levels at work.

Figure 2.6 Domain and forest functional levels

The following example uses Set-ADDomainMode to set the domain functional

level of the child.contoso.com domain to Windows Server 2008 R2:
Set-ADDomainMode –Identity child.contoso.com –DomainMode
Windows2008R2Domain

The next example uses the Set-ADForestMode cmdlet to upgrade the forest
functional level. The –Identity parameter specifies the distinguished name
of the contoso.com forest and specifies a forest functional level of 3, which
denotes the Windows Server 2008 forest functional level:
Set-ADForestMode –Identity dc=contoso,dc=com –ForestMode 3

Creating and Removing UPN Suffixes
In AD, each user account that you create has a user logon name, such as
administrator, a pre-Windows 2000 logon name like
CONTOSO\administrator, and a UPN logon name such as
administrator@contoso.com. The second part of the UPN logon name,
called the UPN suffix, is made up of the DNS domain name of the user's
logon domain by default. The UPN suffix can also be configured as the
DNS name of any domain within the forest, or it can be configured as an
alternative DNS name that has been created by an administrator.

Using alternative domain names as the UPN suffix can help you to
simplify the names that users rely on to log on to other domains in the
forest. For example, if your organization has a domain structure
containing numerous domain trees and child domains, it can be confusing
for users to remember what their UPN suffix has been set to. Creating a
single common UPN suffix for all users lets users log on using a much
simpler logon name, possibly corresponding to the domain of their email
address, regardless of which AD domain their account was created in.
UPN suffixes are configured on a per-forest basis; when you add a new
UPN suffix, it's available forest-wide.

You can modify the list of configured UPN suffixes for a forest by
using the Set-ADForest cmdlet with the –UPNSuffixes argument. The list of
UPN suffixes for a forest is a multivalued array; you'll need to use a @{...}
syntax for the values you wish to modify. The following example

mailto:administrator%40contoso.com

illustrates how to add the headquarters.fabrikam.com UPN suffix to the
existing list of UPN suffixes for a forest. This adds the new UPN suffix
without affecting any suffixes that have already been configured:
Set-ADForest -UPNSuffixes @{Add=”headquarters.fabrikam.com”}

In the next example, you can see how to use the Remove verb to remove
the headquarters.fabrikam.com UPN suffix. This removes only the specified
UPN suffix without affecting any other UPN suffixes configured for the
forest:
Set-ADForest -UPNSuffixes @{Remove=”headquarters.fabrikam.com”}

Next, you'll use the Replace verb to remove all existing UPN suffixes and
replace them with UPN suffixes that you specify. You separate multiple
entries with commas. Finally, you use the $null keyword to remove all
configured UPN suffixes and insert an empty list:
Set-ADForest -UPNSuffixes @{Replace=”headquarters.fabrikam
.com”,”corp.fabrikam.com”}

Set-ADForest –UPNSuffixes $null

You can also perform more than one operation at a time by separating
multiple @{...} entries with semicolons, like this:
@{Add=value1,value2,...};@{Remove=value3,value4,...}

Configuring an Authoritative Time Source
AD is a distributed directory service that must replicate and manage
directory data across multiple DCs, often spanning significant geographic
areas, including the ability to process authentication requests and apply
directory changes that originate from any available DC. In order to
perform this task correctly, AD relies heavily on all DCs, member
servers, and client computers maintaining accurate time on the network;
by default, all domain-joined computers (including DCs) must be
accurate to within 5 minutes of one another. In the case of user
authentication, accurate time synchronization ensures the security of the
user's authentication request by preventing replay attacks. Within an AD
environment, all Kerberos tickets are time-stamped using the local time

of the client computer, translated to Zulu Time, or UTC. When the
authentication request is received by a DC, the DC confirms that the
timestamp falls within this 5-minute clock skew; if not, the authentication
request is rejected.

Within an AD domain, time synchronization occurs using a particular
hierarchy, in which the PDC emulator in the forest root domain is
considered the authoritative time source for the whole forest. The PDC
emulators in any child domains receive their time from the PDC emulator
in the forest root domain. All other DCs within a particular domain
receive their time from the PDC emulator of their own domain, whereas
member servers and client computers receive their time from the DC that
authenticated them.

In order to maintain authoritative time for a forest, the W32Time
service on the PDC emulator in the forest root domain should be
configured to obtain its time from an external time source, typically a
time source on the Internet such as one run by NIST or the U.S. Navy.

The first example shows the commands required to configure the PDC
emulator in the forest root domain to receive its time from an external
time source. The <peers> placeholder should be replaced with the fully
qualified domain name of an Internet time source such as time.nist.gov:
w32tm /config /manualpeerlist:<peers> /syncfromflags:manual /
reliable:yes /update
Stop-Service w32time
Start-Service w32time

The next example shows the commands required to configure all other
computers in an AD forest to receive their time using the default AD
time-synchronization hierarchy:
w32tm /config /syncfromflags:DOMHIER /reliable:no /update
Stop-Service w32time
Start-Service w32time

Retrieving and Setting the Tombstone Lifetime
Because AD is a distributed directory service, object deletions require
special handling so that all DCs can be notified correctly that a particular

object has been deleted. In order to achieve this, when a user or
administrator deletes an object within an AD domain, the object isn't
completely deleted; rather, the object is placed into a tombstoned state
for a period of time called the tombstone lifetime. This tombstone
lifetime allows the deletion of the object to be replicated to all DCs
before the object is removed from the AD database entirely. The
tombstone lifetime needs to be configured with enough time for deletions
to be replicated to all DCs within an AD forest.

In Windows 2000, the default tombstone lifetime was set to 60 days;
subsequent versions of the OS increased the default tombstone lifetime to
180 days. After an AD forest has been created, the tombstone lifetime
remains as is unless it's modified by an administrator. If a Windows 2000
AD is upgraded to Windows Server 2003, the tombstone lifetime remains
at 60 days unless it's updated manually.

The following example uses the Get-ADObject cmdlet to retrieve the
current tombstone lifetime for the contoso.com AD forest:
Get-ADObject -Identity “CN=Directory Service,CN=Windows NT,CN=
Services,CN=Configuration,DC=contoso,DC=COM” -Partition “CN=
Configuration,DC=contoso,DC=COM” –Properties tombstoneLifetime

In the next example, you can see how to modify the tombstone lifetime
for the contoso.com domain to a setting of 210 days:
Set-ADObject -Identity “CN=Directory Service,CN=Windows NT,CN=
Services,CN=Configuration,DC=contoso,DC=COM” -Partition “CN=
Configuration,DC=contoso,DC=COM” -Replace @{tombstoneLifetime=‘210’}

Manage Active Directory Trusts
An AD trust relationship that you establish between two domains or two
forests makes it possible for users in one domain to be authenticated by a
DC in the other domain, thus allowing users to access resources in the
other domain (subject to any ACLs or other authorization controls that
have been placed on the remote resource).

An AD trust may be one-way or two-way in direction, and transitive or

nontransitive in nature. Each trust relationship consists of a trusted
domain (or forest) and a trusting domain (or forest). The trusted domain
in a trust relationship is the one that contains the user objects, whereas
the trusting domain is the one that contains the resources to be accessed.
When you see trust relationships depicted graphically, they're indicated
by an arrow between the two domains. In the case of a one-way trust, the
arrow always points toward the trusted domain, as shown in Figure 2.7.

Trusted and Trusting Domains
A simple mnemonic for remembering the difference between the trusted and trusting
domains, and the direction of the arrow, is this: trusted ends with the word Ed, like
the man's first name. Trusting rhymes (loosely) with thing. The trusting domain
contains the things (resources), whereas the trusted domain contains Ed (the people.)
When you draw the arrows that depict the direction of the trust, the arrow always
points toward Ed.

Figure 2.7 Trusted and trusting domains

In the case of a two-way trust, this means users on either side of the
trust relationship may be authenticated by DCs on either side of the trust
and access resources on either side of the trust. When you see a two-way
trust depicted in a diagram, it's illustrated using a two-way arrow as
shown in Figure 2.8.

Trust Directions
In effect, a two-way trust is two one-way trusts, one in each direction.

Figure 2.8 A two-way AD trust

In addition to the direction of the trust, one-way or two-way, an AD
trust may be either transitive or nontransitive. A transitive trust allows a
trust relationship to extend beyond the trusted and trusting domains and
allows users to access resources in other domains further along the trust
path. For example, if DomainA has a transitive trust relationship with
DomainB, and DomainB has a transitive trust with DomainC, then users
in DomainA can authenticate to DomainC, as shown in Figure 2.9.

Figure 2.9 Transitive trust relationships

Conversely, a nontransitive trust relationship doesn't allow the trust to
extend beyond the specific trusted and trusting domain that you specified
when you created the trust, as shown in Figure 2.10.

Figure 2.10 Nontransitive trust relationship

Create and Remove Active Directory Trusts
Depending on the business and technical requirements of the trust
relationship, you can create several different types of AD trusts:

A cross-forest trust creates a two-way transitive trust between two
AD forests, each of which must be running at least the Windows
Server 2003 forest functional level. This trust creates an effective
mesh of trusts so that each domain in the trusted domain has an
implicit trust relationship with, and thus can access resources within,
each domain in the trusting domain. Figure 2.11 illustrates a cross-
forest trust that has been configured between the contoso.com and
adatum.com AD forests.

Figure 2.11 A cross-forest AD trust

Figure 2.12 and 2.13 illustrate additional examples of cross-forest trust
configurations.

Transitivity of Forest Trusts
The transitivity of a forest trust doesn't extend beyond the two forests that have been
configured for the trust. So a forest trust between ForestA and ForestB creates a two-
way transitive trust between all domains in both trusts. But if you have a forest trust

between ForestA and ForestB, and a second forest trust between ForestB and
ForestC, this doesn't allow users from ForestA to access resources in ForestC, unless
you explicitly create a second forest trust between ForestA and ForestC.

An external trust can be created with a single AD domain if a cross-
forest trust isn't desired or feasible. Instead of a transitive mesh of
trusts, an external trust creates an explicit trust relationship with
only the specific domain in question. An external trust is only ever
nontransitive, but you may create either a one-way or a two-way
external trust. You can see a one-way external trust illustrated in
Figure 2.13. In this example, users from the west.ForestB.com domain
only may access resources in the ForestA.com domain only; if a user
f r o m east.ForestB.com tried to access resources anywhere in the
ForestA.com forest, they would be denied access.
A realm trust may be created between an AD domain and a Unix
Kerberos realm, enabling interoperability with third-party
environments.
A shortcut trust doesn't create a new trust relationship, per se;
rather, it optimizes access between two domains within an existing
cross-forest trust, which is often required in large environments with
deeply nested child domains that may be connected by slow or
overloaded WAN links. A shortcut trust is transitive in nature, and it
may be one-way or two-way in direction.

Figure 2.12 Transitivity of cross-forest trusts

Figure 2.13 A one-way external trust

Creating Trusts with Other Forests
Beginning in Windows Server 2003, AD administrators have the ability
to create a cross-forest trust with other AD forests, as long as both forests
are running at least the Windows Server 2003 forest functional level. This
trust type creates an effective mesh of trusts between all domains in each
forest, by creating a transitive trust between the forest root domains of
each forest. Cross-forest trusts may be one-way or two-way in direction
—in the case of a two-way cross-forest trust, a user in any domain in the
trusted forest can access resources in any domain in the trusting forest,
and vice versa. It's important to remember that this trust transitivity
doesn't extend beyond the two forests: If a cross-forest trust exists
between ForestA and ForestB, and a second cross-forest trust exists
between ForestB and ForestC, users in ForestA can't access resources in
ForestC unless a trust is explicitly created between ForestA and ForestC.

A cross-forest trust can't be automated through the use of the netdom
command-line tool. Cross-forest trusts may only be created using the
Active Directory Domains and Trusts graphical user interface.

Creating External Trusts with a Remote AD
Domain
For scenarios in which a cross-forest trust isn't possible or isn't desired,
you can create an external trust between two specific AD domains. Unlike
the cross-forest trust, which creates a mesh of trusts between two entire
forests, an external trust is a non-transitive trust that only permits users
from one single domain to be able to access resources within a single
remote domain. So, an external trust between the contoso.com and adatum.com
domains allows users from contoso.com to access resources in the adatum.com
domain, but it does not allow contoso.com users to access resources in the
corp.adatum.com child domain without another explicit trust being configured
between contoso.com and corp.adatum.com. External trusts may be one-way or
two-way, and may be created from the command line using the netdom.exe
utility.

The following example creates a one-way trust with fabrikam.com as the
trusting domain and contoso.com as the trusted domain. This trust may be
created as a two-way trust by adding the /twoway switch to the syntax.
You'll be prompted for administrative credentials in both the trusting and
the trusted domain to be able to create a two-way trust within a single
operation:
netdom trust fabrikam.com /d:contoso.com /add

Creating Realm Trusts with a Non-Windows
Kerberos Realm
Because AD is based on Kerberos, an industry standard, you can create
trust relationships between AD domains and forests with a remote realm
based on Kerberos V5. This realm trust allows cross-platform access to
resources and services hosted in Unix and other third-party environments.
Realm trusts may be transitive or non-transitive, and may be configured
as one-way or two-way trusts.

In the following example, the netdom command-line tool is configuring a
realm trust with the ATHENA Kerberos realm as the trusting domain and
contoso.com as the trusted domain. Because this is a realm trust, the
command specifies a trust password that will need to be entered
identically when the trust is configured from a server in the ATHENA realm,
on the Unix side of the trust relationship. As written, the following
example configures a one-way, non-transitive trust relationship. You can
add the /twoway switch to configure this as a two-way trust, and the
/transitive:YES switch to configure a transitive trust:
Netdom ATHENA /d:contoso.com /add /realm /
PasswordT:TrustPA$$w0rd

Creating Shortcut Trusts
In a large AD environment with multiple domain trees, or child domain
structures nested several layers deep, or both, users may encounter
slowness when authenticating to resources nested deep within the forest
structure. This is because of the default trust path used to authenticate
users in a trusted domain to a resource in a remote trusting domain. In a
single AD forest, each child domain has a two-way transitive trust with
its parent domain, whereas in a forest trust between two separate AD
domains, a two-way transitive trust is configured between the forest root
domain of each forest.

Consider a user account in the sales.east.us.contoso.com child domain who
wishes to access a resource in the payroll.finance.de.emea.adatum.com domain
within the adatum.com domain tree. In order for the user to access the
desired resource, they need to walk the default trust path from the sales
domain to the east domain, to the us domain, to the contoso.com root domain.
From there the authentication path continues to the adatum.com root domain,
to emea, to de, to finance, and finally to the payroll domain, which contains
the resource the user is attempting to access. Particularly if the DCs in
any of these domains are connected via slow links, this can create delays
in allowing users to access desired resources. You can see this default

trust path illustrated in Figure 2.14.

Figure 2.14 The default trust path

You can improve the performance of resource access across deeply
nested trusts (across a particular path that is frequently used, for
example) by creating a shortcut trust to optimize the authentication path
that's used between domains. Shortcut trusts are transitive in nature,
meaning that they also confer access to additional domains on the
trusting side of the trust; and shortcut trusts can be one-way or two-way.
In the previous example, you could configure a shortcut trust between the
sales and payroll domains, which would create a trust path consisting of a
single hop whenever a user in the sales domain needed to access a
resource in the payroll domain. If the shortcut trust is one-way in nature,
the optimized trust path wouldn't apply to users in the payroll domain
who attempt to access resources in sales; the longer default trust path
would apply in that case unless the shortcut trust was configured as a
two-way trust. You can see this illustrated in Figure 2.15.

Figure 2.15 Using a shortcut trust

The following example uses the netdom command-line tool to create a
two-way shortcut trust between the ma.finance.corp.contoso.com domain and
the sales.contoso.com domain. (If required, you can also include the /UserD
a n d /PasswordD switches to specify a username and password with
administrative credentials in the sales.contoso.com domain.)
netdom ma.finance.corp.contoso.com /d:sales.contoso.com /add /twoway

Removing a Trust
You can remove an AD trust relationship at any time using the /remove
switch for netdom. In the following example, fabrikam.com denotes the
trusting domain, whereas /d:contoso.com denotes the trusted domain. The
/UserD switch indicates that CONTOSO\ContosoAdmin is a user account that has
administrative privileges in the CONTOSO domain to remove the trust,
whereas /PasswordD:* indicates that the user will be prompted to enter the
password for CONTOSO\ContosoAdmin before the netdom command will run:
netdom trust fabrikam.com /d:contoso.com /remove /UserD:CONTOSO\
ContosoAdmin /PasswordD:*

Manage Active Directory Trusts
Once a trust relationship has been created, there are a number of
administrative tasks that may need to be performed on an ongoing basis.
Depending on the security requirements of a particular trust, you may
need to fine-tune the ability of trusted users to access trusting resources,
either by modifying SID Filtering settings or by enabling selective
authentication across the trust. In large or complex environments, it may
also be necessary to manage the list of UPN suffixes that may be routed
for authentication requests across a particular trust.

Retrieving a List of Trusting and Trusted Domains
When an administrator creates a trust relationship in an AD domain or
forest, that trust is represented by a trusted domain object (TDO) on both

http://sales.contoso.com

sides of the relationship. The TDO is a specific object class in AD that
contains a number of mandatory and optional attributes, including the
name of the trust partner, and the type and direction of the trust.

Using PowerShell, you can obtain a list of trusted and trusting domains
for a particular domain by querying AD for a list of TDOs using the Get-
ADObject cmdlet as shown here:
Get-ADObject -Filter {objectClass -eq “trustedDomain”}
-Properties TrustPartner,TrustDirection,trustType | FT Name,
TrustPartner,TrustDirection,TrustType

Verifying a Trust Relationship
After an AD trust relationship has been established, you may need to
verify the secure channel on which it's based as part of troubleshooting or
ongoing monitoring of your AD environment. This can be performed at
the command line using the netdom command-line tool, as demonstrated
here:
Netdom trust fabrikam.com /d:contoso.com /verify

In this command, fabrikam.com denotes the trusting domain, and
/d:contoso.com denotes the trusted domain.

Configuring SID History
Each security principal in AD (user, group, or computer object) possesses
a numeric security identifier known as an SID. This SID is unique within
a single AD domain and doesn't change even if the security principal is
renamed or moved to another container or OU in the same domain. (The
SID isn't retained if an object is deleted and re-created with the same
display name; the re-created object is a brand-new object with a
completely different SID.) All Windows ACLs configured on files,
folders, and other resources such as SharePoint document libraries use
this SID to determine whether a particular user or computer should be
granted or denied access to that resource.

This becomes potentially problematic, though, if you ever need to

migrate a security principal from its current AD domain into a new AD
domain or forest, as often happens during mergers, acquisitions, or
divestitures in the business world. Because the SID is only unique within
a single domain, migrating a security principal into a new domain creates
a new SID for the object that doesn't correspond to the SID that is present
in any existing ACLs. As a convenience measure during AD migrations,
AD security principals also possess an attribute called SID History, which
allows migrated user objects to retain records of any old SIDs they once
possessed. This lets a migrated object continue to access a resource that
used its premigration SID in an ACL. If a user attempted to access a
resource with their new SID and was denied access, for example,
Windows would check the SID History attribute to determine whether
any previous SIDs were listed in the ACL that would allow or deny
access.

You can enable SID History on any AD trust using the netdom.exe
command, as shown here:
Netdom trust fabrikam.com /d:contoso.com /EnableSIDHistory:Yes

In this example, you can see how to list the SID History setting on an
existing trust relationship without changing the setting:
Netdom trust fabrikam.com /d:contoso.com /EnableSIDHistory

The SID History is a great convenience measure, but it should be clear
that it has the potential to be misused. If a malicious user in the source
domain were able to find the SID of an administrative user in the target
domain and inject that SID into their SID History attribute, this would
create an elevation-of-privilege attack when their account was migrated
into the target domain. So, if you have a trust relationship with users in
contoso.com and resources in adatum.com, and a contoso.com user is able to inject
the SID corresponding to ADATUM\Administrator into their SID History
attribute, this user will have the same privileges as ADATUM\administrator
within the adatum.com domain. This occurs because, without further
restrictions, the SID History feature will process all entries contained in
an object's SID History attribute without performing any sort of sanity

check to determine whether the SID History entry might be malicious or
forged.

You can mitigate this security risk through the use of SID filtering,
which creates a kind of whitelist of domains whose SIDs are honored in
the SID History attribute. This is possible because all security identifiers
contains two components: the domain SID that is common to all security
principals in a single domain, and the relative identifier (RID) that is
unique to the individual object. Put another way: Domain SID + Relative
Identifier = Security Identifier. The SID Filtering feature enumerates the
list of trusted domains for a particular trust and disregards any SID
History entries that don't contain the domain SID corresponding to one of
those domains. In the previous example, if a contoso.com user attempts to
access an adatum.com resource, SID Filtering filters out the
ADATUM\Administrator entry in the user's SID History because adatum.com isn't in
the list of trusted domains for that trust.

SID Filtering is enabled automatically on any trust relationship created
in Windows Server 2003 or later. To enable SID Filtering on an existing
trust, you run the netdom.exe command and disable the SID History feature.
(Likewise, enabling SID History on a trust relationship disables SID
Filtering.) The following example shows how to enable SID Filtering on a
trust relationship by disabling SID History:
Netdom trust fabrikam.com /d:contoso.com /EnableSIDHistory:No

Configuring Selective Authentication
When you configure a trust relationship between two AD domains or
forests, by default the Authenticated Users group in the trusted domain
possesses all the permissions of the Authenticated Users group in the
trusting domain. This includes the ability to authenticate to any domain-
joined computer in the trusting domain. If you want to restrict the
computers in the trusting domain to which trusted users are able to
authenticate, in high security and/or restricted-use environments, for
example, you can configure selective authentication on the trust

relationship. Doing so forces administrators in the trusting domain to
specify computers to which users from the trusted domain can
authenticate. This additional permission is assigned through the use of
the Allowed to Authenticate extended right that exists on each computer
account. (Chapter 10, “Backing Up Data and Recovering from Disasters,”
will include scripts to automate the ability to assign this extended right
on one or several computer accounts.) The following example
demonstrates how to enable selective authentication on an AD trust
relationship:
Netdom trust fabrikam.com /d:contoso.com /SelectiveAuth:Yes

Configuring Name-Suffix Routing
When two AD forests are connected via a forest trust, you can configure
name-suffix routing to control how authentication requests are managed
across the trust relationship. When you create a new forest trust, AD
automatically adds a new name-suffix route to both sides of the trust in a
format that allows authentication requests to be routed to the trusted and
trusting forests, as well as to all child domains. If a forest trust has been
configured with the contoso.com forest, a name suffix route of *.contoso.com is
added dynamically to both sides of the trust. This simplifies
administration of authentication requests by allowing all unique name
suffixes to be routed across the forest trust.

In more complex environments, you may need to add additional name
suffixes to a particular trust relationship, or you may need to exclude a
particular name suffix from the wildcard routing created by the use of the
*. You can use the netdom command-line tool to list all routed name
suffixes and to enable or disable routing for particular name suffixes,
NetBIOS names, and SIDs.

For example, you may wish to create a forest trust between two forests,
adatum.com and contoso.com, both of which contain a child domain with a
NetBIOS name of SALES—if the ussales.adatum.com and sales.contoso.com
child domains both possess the same NetBIOS name, this creates a

conflict across the forest trust. In this example, after you create the new
trust to contoso.com, users in the Adatum forest can't route authentication
requests to the sales.contoso.com domain using the SALES NetBIOS name,
but users in contoso.com can still access resources in sales.contoso.com using
its NetBIOS name. If you need to allow users to use the NetBIOS name
SALES to route to the contoso.com forest instead, you can use netdom to
disable SALES in adatum.com and then enable it in contoso.com.

The following example details all name suffixes that are currently
configured over the forest trust between fabrikam.com and contoso.com (sample
output is listed following the netdom command syntax):
Netdom trust fabrikam.com /namesuffixes:contoso.com

Name, Type, Status, Notes

1. *.contoso.com, Name Suffix, Enabled

2. *.child.contoso.com, Name Suffix, Enabled

3. CHILD, Domain NetBIOS name, Enabled, For child.contoso.com

4. s-1-5-21-1550512861-723516995-420396236, Domain SID, Enabled,
For child.contoso.com

In order to enable or disable a particular suffix, you need to run the first
command from the following example and take note of the number
assigned to the suffix that you want to enable (if currently disabled) or
disable (if currently enabled). When you have the number, run the netdom
command a second time using the /togglesuffix argument, as shown here:
Netdom trust fabrikam.com /namesuffixes:contoso.com
netdom trust fabrikam.com /namesuffixes:contoso.com /
togglesuffix:3

In the case of a forest trust with a non-Windows realm, you can also use
netdom to add additional name suffixes to and remove them from the forest
trust, as well as add specific exclusions to and remove them from the
forest trust. (Note that this may only be performed using netdom in the case
of a forest-transitive, non-Windows realm trust. For a cross-forest trust
between two AD forests, name suffixes and name suffix exclusions must
be added or removed using the Active Directory Domains and Trusts user

interface.) The following examples demonstrate how to add and remove a
name suffix, as well as how to add and remove a name-suffix exclusion:
Netdom trust fabrikam.com /d:contoso.com /
AddTln:contosoresearch.com
Netdom trust fabrikam.com /d:contoso.com /
RemoveTln:contosoresearch.com
Netdom trust fabrikam.com /d:contoso.com /
AddTlnEx:contosoresearch.com
Netdom trust fabrikam.com /d:contoso.com /
RemoveTlnEx:contosoresearch.com

Chapter 3

Managing Sites and Replication

IN THIS CHAPTER, YOU WILL LEARN TO:
MANAGE THE SITE TOPOLOGY

Edit Sites, Site Links, and Subnets
Manage Site Settings

MANAGE REPLICATION
View the State of Replication
Tune Replication Settings

In Active Directory, sites are the only view that your domain controllers
(DCs) have into your physical network infrastructure. Active Directory is
optimized to take advantage of this knowledge. The more accurately your
site topology reflects what your network is like, the better Active
Directory will perform. For example, if Active Directory knows that the
network link between your Chicago site and your Seattle site is faster
than the link between your Chicago site and your Baltimore site, then
DCs will prefer to replicate data to your Chicago DCs from Seattle rather
than from Baltimore.

Your site topology affects things other than replication as well. There
are some services on your network whose behavior you determine by
using the site topology. One such case is client logon traffic. Clients
prefer to perform their logon sequence against DCs that have good
physical connectivity. Another example of a server that relies on the site
topology is the Distributed File System (DFS). DFS can provide a virtual
namespace for file shares. When a client accesses the namespace, DFS
can use the site topology to determine whether the user accesses the copy

of the file hosted in Baltimore or Seattle. DFS is just one of example of
this. The site topology information can be made available to any
application or service on your network that wants to take advantage of it.
Because of this, it's sometimes difficult in complex enterprise
environments to understand the impact that a site topology change may
have. Managing your site topology is of utmost importance. In this
chapter, you'll learn how to manage this site topology and also be
introduced to the various factors that affect replication.

Manage the Site Topology
The site topology can be broken down into a few different components.
Consider the site topology diagram in Figure 3.1.

Figure 3.1 An example site topology

In the figure, the larger circles represent the sites themselves.
Typically, a site is a collection of well-connected networks. These are
usually local area networks (LANs) with connection speeds ranging from
10 Mbps to multiple Gbps. More often than not, the circle in Figure 3.1
also represents a geographic boundary; that's why you'll sometimes see
sites named after physical locations or office building codes. However,
there is no requirement for the networks in a site to be in the same
building.

The primary design considerations are typically client logon and Active
Directory replication. Client computers will attempt to process their
logon against a DC in the same site; if this site is in the same physical
building on the same physical network, then the result will be a much
better experience for the end users. Also, when Active Directory sees that
two DCs are in the same site, it assumes that the network connection is

faster and more reliable and therefore optimizes replication traffic
between those DCs.

You'll also notice in Figure 3.1 that lines connect some of the sites
together. These are called site links. Site links represent physical network
connections between sites. When you tell Active Directory that one site is
linked to another, then Active Directory knows that when a DC in one site
talks to another, it has to traverse the network. Because of this, Active
Directory may optimize the traffic between those two DCs. For example,
in some cases Active Directory compresses replication data. Doing so
results in higher CPU utilization on the DC but increases network
efficiency.

When you define a site link in Active Directory, you give the site link
an arbitrary number, referred to as the cost. This gives Active Directory
some insight into the conditions of the connection as compared to other
connections. We'll give you some guidance for specifying this cost later
in this chapter.

Edit Sites, Site Links, and Subnets
When you define what a site is in Active Directory, you give the site a
name, a list of subnets in the site, and a list of other sites that it can talk
to directly. When these components come together, you can paint an
accurate picture of what your network looks like and give that picture to
Active Directory. As time moves on, however, things tend to change. This
will include the addition or removal of sites, subnets, and site links.
Therefore, as an Active Directory administrator, it's important to ensure
that you're aware of the changes occurring on your network. If a physical
connection between sites is removed from your network, you'll want to
reflect this change in your Active Directory site topology to ensure that
Active Directory is making the right decisions.

The information about your site topology is unique for each Active
Directory forest. So if you have two separate forests in your environment,

you'll need to update the site topology in each forest independently.
Information about the site topology is stored in Active Directory itself.
The directory contains multiple partitions, each with its own purpose. The
site topology is stored in the configuration partition, whose purpose is to
store configuration data about the forest. For more information about
directory partitions, refer to Chapter 2, “Managing Domains and Forests.”

Manage Sites
When managing your site topology, you should ensure that you first have
an accurate representation of your sites. As stated earlier, a site ideally
consists of a collection of well-connected networks with good bandwidth
and low latency. Here, we'll look at how to manage the site objects
themselves, determine which ones exist, remove old ones, and create new
ones. Later in this chapter, we'll explore some of the additional settings
that can be configured for each site that affect your end-user's and
application's experience.

List All the Sites in a Forest
Each site has a unique object in Active Directory's configuration
partition. You can view what sites exist in your forest by connecting to
the configuration partition and listing each of the site objects. If you're
using ADSI, you can use the following steps in PowerShell to obtain a list
of sites in your forest:

1. Obtain the Distinguished Name (DN) of the configuration partition.
The following PowerShell command retrieves the DN of the
configuration partition for the domain that your computer is currently
a member of. Here, the DN is stored in the $cnfg variable.
$cnfg = ([ADSI]“LDAP://RootDSE”).configurationNamingContext

2. Connect to the Sites container. This container is the parent for each
of the site objects in the forest. The DN of the Sites container is
CN=Sites, CN=Configuration, <domain DN>. For example, in the contoso.com

domain, the DN of the Sites container is CN=Sites, CN=Configuration,

DC=contoso, DC=com:
$sites = [ADSI]“LDAP://CN=Sites,$cnfg”

3. List the site objects by passing the children to the ForEach-Object
cmdlet. By default, this list includes objects that aren't sites.
Therefore, you need to filter the list so that only site objects are
displayed. In the following command, this is accomplished by using
the Where-Object cmdlet:
$sites.children | where-object {$_.objectcategory -like

“CN=Site*”} | ForEach-Object { $_.Name }

Rather than running these steps each time, you can use the script in
Listing 3.1, which combines them.

Listing 3.1: ListSites-ADSI.ps1

File Name: ListSites-ADSI.ps1
Description: Uses ADSI to print a list of sites in the forest
Get the DN of the configuration partition in the current forest
$cnfg = ([ADSI]“LDAP://RootDSE”).configurationNamingContext
Get the DN of the Sites container
$sites = [ADSI]“LDAP://CN=Sites,$cnfg”
Loop through each object in the Sites container
foreach ($site in $sites.children)
{
 # If the object is a site object, display its information
 if ($site.objectcategory -like “CN=Site*”)
 {
 $site.Name
 }
}

There is no specific set of cmdlets in the Active Directory module for
working with sites. However, you can use the Get-ADObject cmdlet to view
site objects. The Get-ADObject cmdlet can be used to search through an
Active Directory subtree and return objects that meet the conditions set in
the filter. The following PowerShell one-liner uses the Get-ADObject cmdlet
to display a list of sites in the forest to which you're currently logged in:
Get-ADObject -Filter ‘objectclass -eq “site”’ -SearchBase
(Get-ADRootDSE).ConfigurationNamingContext’ | ft name

Remove a Site
When you remove a site, you're not only removing the site object itself,
but also its association with any site links as well as the list of subnets
that was assigned to the site. If the site still physically exists in your
environment, then you should ensure that the subnets associated with the
site are associated with a different site. You can use the following steps
to remove a site with ADSI in PowerShell:

1. Retrieve the DN of the forest's configuration partition. The
following command stores the configuration partition DN for the
current forest in the $cnfg variable:
$cnfg = ([ADSI]“LDAP://RootDSE”).configurationNamingContext

2. Build out the DN of the site that you want to delete. You can do this
by prepending the configuration partition DN with the common name
of the site followed by the common name of the Sites container. For
example, the Baltimore site in the contoso.com domain has the following
D N : CN=Baltimore, CN=Sites, CN=Configuration, DC=contoso, DC=com. The
following command builds out the site's DN and places it in $site:
$site = [ADSI](“LDAP://cn=Baltimore,cn=sites,$cnfg”)

3. Call the DeleteTree method on the site to delete the site object and its
associated child objects:
$site.DeleteTree

The script in Listing 3.2 uses ADSI to delete the site that you pass in
as the first script parameter.

Listing 3.2: RemoveSite-ADSI.ps1

File Name: RemoveSite-ADSI.ps1
Description: Uses ADSI to remove the site specified in the command.

Prints out information for how to use the script
$script_name = $MyInvocation.MyCommand.Name
function print_usage
{
 Write-Host “You must specify the site name that you would like
 to ‘remove.”

 Write-Host
 Write-Host “Example:”
 Write-Host “ $script_name Baltimore”
}
Removes the site
function remove_site($sitename)
{
 # Add cn= to the site name to make it a common name
 $sitename = “cn=$sitename”
 # Get the configuration partition
 $cnfg = ([ADSI]“LDAP://RootDSE”).configurationNamingContext
 # Delete the site object
 $site = [ADSI](“LDAP://$sitename,cn=sites,$cnfg”)
 $site.DeleteTree()
}
Ensure that a site name was passed into the script. If not, show
an example of how to use the script and then exit. Else, remove
the site
if ($args.Length -eq 0)
{
 print_usage
 Exit
}
else
{
 # Get the name of the site from the first command line argument
 $sitename = $args[0]

 try
 {
 remove_site($sitename)
 Write-Host “The site $sitename was successfully deleted.”
 }
 catch
 {
 Write-Host “The site $sitename could not be deleted:”
 Write-Host “ $_”
 }
}

When using the Active Directory PowerShell module, you can use the
Remove-ADObject cmdlet to delete a site. You'll need to pass in the DN of the
site and specify the -Recursive option to ensure that the NTDS Site Settings and
Servers containers are both deleted as well. If you know the site's DN, you
can use the following one-liner to delete the site:
Remove-ADObject <SiteDN> -Recursive

For example, to delete the Baltimore site in the contoso.com forest, the
command would resemble the following:
Remove-ADObject “CN=Baltimore,CN=Sites,CN=Configuration,

DC=contoso,DC=com” -Recurse

If you don't know the DN of the site and would rather use the name, you
can use the script in Listing 3.3. Remember that this script uses the
Active Directory module, so you need to have the module imported
before you can use it. Pass the name of the site into the script as the first
parameter. Note that this script won't prompt you for confirmation before
deleting the site.

Listing 3.3: RemoveSite-ADModule.ps1

File Name: RemoveSite-ADModule.ps1
Description: Uses the AD Module to remove the site specified in
the command.
Prints out information for how to use the script
$script_name = $MyInvocation.MyCommand.Name
function print_usage
{
 Write-Host “You must specify the site name that you would like” +
 “to remove.”
 Write-Host
 Write-Host “Example:”
 Write-Host “ $script_name Baltimore”
}
Removes the site
function remove_site($sitename)
{
 # Get the DN of the Site object
 $rootdse = Get-ADRootDSE
 $cnfg = $rootdse.ConfigurationNamingContext
 $sitedn = “CN=$sitename,CN=Sites,$cnfg”
 # Delete the site object
 Remove-ADObject $sitedn -Recursive -Confirm:$false
}

Ensure that a site name was passed into the script. If not, show
an example of how to use the script and then exit. Else, remove
the site
if ($args.Length -eq 0)
{
 print_usage
 Exit
}
else
{
 # Get the name of the site from the first command line argument
 $sitename = $args[0]
 try
 {
 remove_site($sitename)

 Write-Host “The site $sitename was successfully deleted.”
 }
 catch
 {
 Write-Host “The site $sitename could not be deleted:”
 Write-Host “ $_”
 }
}

Create a Site
When you create a site in Active Directory, it isn't required to contain a
DC; but in most configurations, it's preferred to have one. Therefore, if
you're building a new Active Directory infrastructure, you can create your
sites in advance before your DCs are added.

To create a new site, you'll need to create two other objects to go along
with it. We'll walk you through this process step by step using ADSI first,
and then we'll give you an ADSI-based PowerShell script that you can use
to create site objects. Feel free to open PowerShell in your lab
environment and follow along.

First, you need to connect to the configuration partition's container in
the forest. As stated earlier, this is where your site topology information
is kept. The following command stores the name of the configuration
partition container in the variable called $cnfg. The configuration partition
used is the one associated with the forest that the machine running the
command is in:
$cnfg = ([ADSI]“LDAP://RootDSE”).configurationNamingContext

Next, you need to get a copy of the Sites container object. Here you'll
store it in the $sites variable. Notice that for the LDAP path, you append
the name of the configuration partition's container to the end of the string
LDAP://cn=sites. For example, if the forest name is contoso.com, the
configuration partition's container name is cn=configuration,dc=contoso,dc=com.
Therefore, the Sites container is located at
cn=sites,cn=configuration,dc=contoso,dc=com.
$sites = [ADSI](“LDAP://cn=sites,” + $cnfg)

You then create the site object as a child to the Sites container. To do

this, call the Create function on the Sites container, passing in site as the
object type and a common name. The common name parameter must
begin with cn=. In the following commands, the newly created site object
is stored in the $site variable. After the object is created, you need to call
the SetInfo function to make the changes in Active Directory:
$site = $sites.Create(“site”, “cn=Baltimore”)
$site.SetInfo()

The site object represents the actual site, but you must also create some
additional child objects. The site object itself has two children that need
to exist: the NTDS Site Settings object and the Servers container. The NTDS Site
Settings object contains directory service configuration settings for DCs in
the site. Some examples of information stored here are the replication
schedule and a pointer to query policies that apply to the site.

Query Policies
A query policy is an LDAP policy that defines limits on use of LDAP operations on
DCs. Query policies can prevent Denial of Service (DoS) attacks on DCs by setting
things like IP block lists, the maximum number of LDAP connections, and timeout
values. In most cases, the query policy values don't need to be changed.

To create the NTDS Site Settings object, you follow a process similar to the
one you used to create the site object. Call the Create function on the site
object, and pass in NTDSSiteSettings as the object type along with the
common name CN=NTDS Site Settings:
$ntdssettings = $site.Create(“NTDSSiteSettings”, “CN=NTDS Site
Settings”)
$ntdssettings.SetInfo()

The last child object that you need to create is the Servers container. This
container is where your server objects will be stored. These server objects
aren't the same as the DC's computer object, which is stored in the
directory's domain partition. The server objects here are representations of
each DC in the site and contain site-specific information for the DCs.
Again, you call the Create function to create the Servers container, but this

time you pass in ServersContainer as the object type and cn=Servers as the
common name:
$server = $site.Create(“serverscontainer”, “cn=Servers”)
$server.SetInfo()

When all of these objects are created, you have a complete site. The
PowerShell script in Listing 3.4 puts these commands together and allows
you to create a site by passing the name of the site that you want to
create.

Listing 3.4: CreateSite-ADSI.ps1

File Name: CreateSite-ADSI.ps1
Description: Creates a site in Active Directory with the name
that is passed in as the first parameter. This version uses
ADSI.
Prints out information for how to use the script
$script_name = $MyInvocation.MyCommand.Name
function print_usage
{
 Write-Host “You must specify the site name that you would like ” +
 “to create.”
 Write-Host
 Write-Host “Example:”
 Write-Host “ $script_name Baltimore”
}
Creates the site
function create_site($sitename)
{
 # Add cn= to the site name to make it a common name
 $sitename = “cn=$sitename”

 # Get the configuration partition
 $cnfg = ([ADSI]“LDAP://RootDSE”).configurationNamingContext
 # Get the sites containers
 $sites = [ADSI](“LDAP://cn=sites,$cnfg”)
 # Create the site object
 $site = $sites.Create(“site”, $sitename)
 $site.SetInfo()
 # Create the NTDS Site Settings object
 $ntdssettings = $site.Create(“ntdssitesettings”,
 “CN=NTDS Site Settings”)
 $ntdssettings.SetInfo()
 # Create the Servers container
 $server = $site.Create(“serverscontainer”, “cn=Servers”)
 $server.SetInfo()
}
Ensure that a site name was passed into the script. If not, show
an example of how to use the script and then exit. Else, create
the site

if ($args.Length -eq 0)
{
 print_usage
 Exit
}
else
{
 # Get the name of the site from the first command line argument
 $sitename = $args[0]

 try
 {
 create_site($sitename)
 Write-Host “The site $sitename was successfully created.”
 }
 catch
 {
 Write-Host “The site $sitename could not be created:”
 Write-Host “ $_”
 }
}

Creating a site with the Active Directory module is a little easier than
using ADSI, but it still follows the same general process. Unfortunately,
there isn't a single cmdlet that you can use to create a site. You'll need to
create the site by creating the three objects that were discussed
previously.

To create the objects, you can use the New-ADObject cmdlet. This is slightly
easier than using pure ADSI, because you're using a PowerShell cmdlet
rather than calling functions directly. However, it still requires multiple
steps and you may want to use a script.

First, retrieve the DN for the configuration partition using the Get-
ADRootDSE cmdlet. In this example, the configuration partition DN is stored
in the $cnfg variable:
$rootdse = Get-ADRootDSE
$cnfg = $rootdse.ConfigurationNamingContext

After you have the configuration partition DN, you can derive the DN
of the Sites container by adding CN=Sites to the beginning of the
configuration partition's DN:
$sites = “CN=Sites,$cnfg”

The New-ADObject cmdlet requires that you pass in the common name of

the new object, the DN of the object's parent, and the object type. The
following command passes these parameters into the New-ADObject cmdlet
and creates the site:
New-ADObject -Name “CN=Baltimore” -Path $sites -Type Site

After the site object is created, you need to create the NTDS Site Settings
object and the Servers container. You'll use the New-ADObject cmdlet again to
create these objects. This time, the site you just created is the parent, so
you must pass in the DN of the site. You can create the DN by prepending
the site's common name to the front of the Sites container's DN:
$sitedn = “CN=Baltimore,$sites”

You can then create the two objects:
New-ADObject -Name “NTDS Site Settings” -Path $sitedn
 -Type NTDSSiteSettings
New-ADObject -Name “Servers” -Path $sitedn -Type serversContainer

To make this process more repeatable, you can place it in a script.
Listing 3.5 uses the Active Directory module to create a site. Pass the
name of the site in as the first parameter when you call the script. Also,
remember that you'll need to ensure that the AD module is imported
before this script will run.

Listing 3.5: CreateSite-ADModule.ps1

File Name: CreateSite-ADModule.ps1
Description: Creates a site in Active Directory with the name
that is passed in as the first parameter. This version uses ## uses the Active Directory module for PowerShell.
Prints out information for how to use the script
$script_name = $MyInvocation.MyCommand.Name
function print_usage
{
 Write-Host “You must specify the site name that you would ” +
 “like to create.”
 Write-Host
 Write-Host “Example:”
 Write-Host “ $script_name Baltimore”
}
Creates the site
function create_site($sitename)
{
 # Get the DN of the Sites container
 $rootdse = Get-ADRootDSE

 $cnfg = $rootdse.ConfigurationNamingContext
 $sites = “CN=Sites,$cnfg”
 # Create the site object
 New-ADObject -Name $sitename -Path $sites -Type Site

 # Get the DN of the site that was just created
 $sitedn = “CN=$sitename,$sites”
 # Create the NTDS Site Settings object and the Servers container

 New-ADObject -Name “NTDS Site Settings” -Path $sitedn
 -Type NTDSSiteSettings
 New-ADObject -Name “Servers” -Path $sitedn -Type serversContainer
}
Ensure that a site name was passed into the script. If not, show
an example of how to use the script and then exit. Else, create
the site
if ($args.Length -eq 0)
{
 print_usage
 Exit
}
else
{
 # Get the name of the site from the first command line argument
 $sitename = $args[0]
 try
 {
 create_site($sitename)
 Write-Host “The site $sitename was successfully created.”
 }
 catch
 {
 Write-Host “The site $sitename could not be created:”
 Write-Host “ $_”
 }
}

Manage Subnets for a Site
Each site has a list of subnets that are associated with it. This subnet list
is what tells Active Directory which networks are associated with a site.
For example, when a client logs on to the domain, the client logon
process determines which site the client is in by examining the client's IP
address. This IP address is weighed against the list of known subnets in
Active Directory. The client's logon traffic is processed against a DC in
the site associated with the subnet the client is coming from.

In Active Directory, subnets are defined in Classless Inter-Domain
Routing (CIDR) notation. CIDR specifies the subnet in terms of the

network's IP address, followed by a forward slash, followed by the
number of bits in the bitmask. For example, the Class C network
192.168.0.0 with network mask of 255.255.255.0 is referenced as
192.168.0.0/24 in CIDR notation.

Subnet objects are stored in the configuration partition under the
container called CN=Subnets, which is a child object of the Sites container.
For example, the Subnets container in the contoso.com domain has a DN of
CN=Subnets, CN=Sites, CN=Configuration, DC=contoso, DC=com. The common name of
the subnet object that represents each network is the CIDR prefixed with
CN=. The common name of the network referenced in the example earlier
i s CN=192.168.0.0/24. If added to the contoso.com domain, the full DN of the
subnet object is CN=192.168.0.0/24, CN=Subnets, CN=Sites, CN=Configuration,

DC=contoso, DC=com.

View the Subnets Associated with a Site
Subnets are associated with Active Directory sites by their siteObject
attribute. This attribute contains the DN of the site that the subnet is a
part of. In addition, each site object also contains an attribute called
siteObjectBL, which is a back-link of all the DN references by the subnet
objects. When a subnet adds a site object's DN to its siteObject attributes,
the back-link is automatically created on the site object in the siteObjectBL
attribute. This gives you a single place that you can query to get a list of
all the subnets in an Active Directory site. Without this back-link, you
would have to enumerate every subnet object and examine the siteObject on
each one.

You can use the following steps to use ADSI in PowerShell to view the
list of subnets in a site:

1. Connect to the site object in PowerShell. In the following example,
you store the site object in the $site variable. To do this, you need to
use the site's DN:
$site = [ADSI]“LDAP://CN=Baltimore,CN=Sites,CN=Configuration,
DC=contoso,DC=com”

2. From here, you can reference the siteObjectBL attribute, which is
displayed in the console:
$site.siteObjectBL

If you don't want to use the DN of the site, you can use the script in
Listing 3.6 to display the list of subnets in a site. If you specify the
name of the site as an input parameter into the script, that particular
site's subnets will be displayed. If you don't use any input parameters,
the script will enumerate every site in the forest and display the subnets
associated with each one.

Listing 3.6: ListSubnets-ADSI.ps1

File Name: ListSubnets-ADSI.ps1
Description: Uses ADSI to list the subnets in an Active
Directory site.
Lists the subnets for one site
function list_one($sitename)
{
 # Add cn= to the site name to make it a common name
 $sitename = “cn=$sitename”
 # Get the configuration partition
 $cnfg = ([ADSI]“LDAP://RootDSE”).configurationNamingContext
 # Get the site
 $site = [ADSI](“LDAP://$sitename,cn=sites,$cnfg”)
 if ($site.distinguishedName -eq $null) { Throw }
 # Display the Site Name and its subnets
 Write-Host $site.Name
 Write-Host “--------------------------------”
 if ($site.siteObjectBL.Count -eq 0)
 {
 Write-Host “No subnets found for this site”
 }
 else
 {
 $site.siteObjectBL
 }
}

If a site name was not passed into the script, enumerate every site.
Otherwise, use the site that was passed in.
if ($args.Length -eq 0)
{
 # Get the DN of the configuration partition in the current forest
 $cnfg = ([ADSI]“LDAP://RootDSE”).configurationNamingContext
 # Get the DN of the Sites container
 $sites = [ADSI]“LDAP://CN=Sites,$cnfg”
 # Loop through each object in the Sites container

 foreach ($site in $sites.children)
 {
 # If the object is a site object, display its subnet list
 if ($site.objectcategory -like “CN=Site*”)
 {
 list_one($site.Name)
 Write-Host
 }
 }
}
else
{
 # Get the name of the site from the first command line argument
 $sitename = $args[0]
 try
 {
 list_one($sitename)
 }
 catch
 {
 Write-Host “Could not retrieve the subnets for ” +
 “site $sitename:”
 Write-Host “ $_”
 }
}

If you're using the Active Directory module and know the DN of the
site, you can retrieve a list of subnets in the site with a one-liner. The
following one-liner lists the subnets in the Baltimore site in the contoso.com
forest:
Get-ADObject ‘CN=Baltimore,CN=Sites,CN=Configuration,DC=contoso,
DC=com’ -Properties siteObjectBL | foreach { $_.siteObjectBL }

If you want to retrieve a list of all subnets in the forest and you don't
care which site they're associated with, you can search the directory for
all objects that have the type Subnet and list them. The following one-liner
does this for the contoso.com forest:
Get-ADObject -Filter ‘objectclass -eq “subnet”’ -SearchBase
“CN=Configuration,DC=contoso,DC=com”

The script in Listing 3.7 is similar to the ListSubnets-ADSI.ps1 script, but
instead it uses the Active Directory module. Make sure you have the
Active Directory module imported before running this script.

Listing 3.7: ListSubnets-ADModule.ps1

File Name: ListSubnets-ADModule.ps1
Description: Uses the Active Directory Module to list the subnets
in an Active Directory site.
Lists the subnets for one site
function list_one($sitename)
{
 # Get the DN of the Site object
 $rootdse = Get-ADRootDSE
 $cnfg = $rootdse.ConfigurationNamingContext
 $sitedn = “CN=$sitename,CN=Sites,$cnfg”
 # Get the site
 $site = Get-ADObject $sitedn -properties siteObjectBL
 # Throw an error if the site doesn't exist
 if ($site.distinguishedName -eq $null) { Throw }
 # Display the Site Name and its subnets
 Write-Host $site.Name
 Write-Host “--------------------------------”
 if ($site.siteObjectBL.Count -eq 0)
 {
 Write-Host “No subnets found for this site”
 }
 else
 {
 $site.siteObjectBL
 }
}
If a site name was not passed into the script, enumerate every site.
Otherwise, use the site that was passed in.
if ($args.Length -eq 0)
{
 # Get a collection of sites in the forest
 $rootdse = Get-ADRootDSE
 $cnfg = $rootdse.ConfigurationNamingContext

 $sites = Get-ADObject -Filter ‘objectclass -eq “site”’
 -SearchBase $cnfg
 # Loop through each site in the forest and display the
 # list of subnets
 foreach ($site in $sites)
 {
 list_one($site.Name)
 Write-Host
 }
}
else
{
 # Get the name of the site from the first command line argument
 $sitename = $args[0]

 try
 {
 list_one($sitename)
 }
 catch
 {
 Write-Host “Could not retrieve the subnets for ” +

 “site $sitename:”
 Write-Host “ $_”
 }
}

Create a Subnet
When creating a subnet, you'll need to give Active Directory two pieces
of information. The first is the CIDR notation of the subnet. As
mentioned earlier in this section, the CIDR is a way of expressing the
network segment in terms of an IP address range and a subnet bitmask.
The second piece of information you'll need to pass in is the name of the
site that the subnet is associated with.

The subnet is created as the object type Subnet in the Subnets container in
the configuration partition. This subnet object contains an attribute called
the siteObject attribute, which specifies which site the subnet belongs to.
Therefore, when creating the subnet object, you need to set the siteObject
attribute to be the DN of the site that the subnet is associated with. You
can use the following steps to create a subnet object with ADSI:

1. Connect to the Subnets container in the configuration partition. The
Subnets container always resides under the Sites container; therefore,
you can build the DN as a string variable when you have the DN of the
configuration partition. The following commands store the DN of the
Subnets container in the variable $subnets_cn and then connect to the
container with the $subnets_obj variable:
$cnfg = ([ADSI]“LDAP://RootDSE”).configurationNamingContext
$subnets_cn = “cn=Subnets,cn=Sites,$($cnfg)”
$subnets_obj = [ADSI](“LDAP://$($subnets_cn)”)

2. Create the subnet object as a child object to the Subnets container. You
should pass in subnet as the object type, as demonstrated in the
following command. Also, ensure that you use the cn= convention on
the subnet's CIDR when passing it into the Create method:
$new_subnet = $subnets_obj.Create(“subnet”,
“cn=192.168.0.0/24”)

3. Before running SetInfo() to make the change in Active Directory, put

the site's DN into to the siteObject attribute on the new subnet object. As
mentioned earlier, doing so associates the subnet with the Active
Directory site. In this example, you associate the subnet with the site
named Seattle:
$new_subnet.Put(“siteObject”, “cn=Seattle,cn=Sites,$($cnfg)”)

4. Run SetInfo() to make the change to Active Directory. It's important
to note here that if the CIDR notation of the subnet is invalid, the
SetInfo() method will throw an error. Therefore, if you're using a script,
you may want to embed some logic to verify that the CIDR is valid
before attempting to create the subnet in Active Directory:
$new_subnet.SetInfo()

The script in Listing 3.8 uses the steps just discussed to provide an
easier approach to creating subnets. When you run this script, pass in
the subnet's CIDR as the -Subnet parameter and the name of the site as
the -SiteName parameter, as in the following example:
CreateSubnet-ADSI.ps1 -Subnet 192.168.0.0/24 -SiteName Seattle

Listing 3.8: CreateSubnet-ADSI.ps1

File Name: CreateSubnet-ADSI.ps1
Description:
Uses ADSI to create a subnet in an Active Directory site.
Param($Subnet, $SiteName)
Create the subnet for the specified site
function create_subnet($_subnet, $_sitename)
{
 # Get the DN of the configuration partition
 $cnfg = ([ADSI]“LDAP://RootDSE”).configurationNamingContext
 # Build the DN of the site that was passed in
 $site_dn = “cn=$($_sitename),cn=Sites,$($cnfg)”
 # Get the Subnets container
 $subnetcontainer = [ADSI](“LDAP://cn=Subnets,cn=Sites,$($cnfg)”)
 # Create the subnet object in the Subnets container
 $subnetobj = $subnetcontainer.Create(“subnet”, “cn=$($_subnet)”)
 $subnetobj.Put(“siteObject”, $site_dn)
 $subnetobj.SetInfo()
}
Check to ensure that the correct parameters were specified for
the script
if ($Subnet -eq $null -or $SiteName -eq $null)
{
 $script_name = $MyInvocation.MyCommand.Name

 Write-Host “‘nMissing or invalid parameters. Please ensure” +
 “that you include both a subnet using CIDR notation and” +
 “the name of the site that you want to add the subnet to.”
 Write-Host “‘nExample:”
 Write-Host “‘t$($script_name) -Subnet 192.168.0.0/24 -SiteName” +
 “Baltimore”
 Exit
}
Attempt to create the subnet in the specified site
try
{
 create_subnet $Subnet $SiteName
 Write-Host “‘nSubnet $($Subnet) successfully created and added” +
 “ to the $($SiteName) site.”
}
catch
{
 Write-Host “‘nCould not create the subnet for site $($SiteName):”
 Write-Host “‘t$_”
}

You can also use the New-ADObject cmdlet in the Active Directory module
to create the subnet object. The process is still the same: create the object
as a child of the Subnets container, and then point the siteObject attribute to
the site's DN. The following commands demonstrate how to do this with
the New-ADObject cmdlet:
$site_dn = “cn=Seattle,cn=Sites,cn=Configuration,dc=contoso,
dc=com”

$subnets_dn = “cn=Subnets,cn=Sites,cn=Configuration,dc=contoso,
dc=com”

New-ADObject -Name “192.168.0.0/24” -Path $subnets_dn -Type
Subnet -OtherAttributes @{siteObject=$site_dn}

The script in Listing 3.9 uses the AD module to create the subnet rather
than ADSI. The syntax of the script is the same as the ADSI script used
earlier.

Listing 3.9: CreateSubnet-ADModule.ps1

File Name: CreateSubnet-ADModule.ps1
Description:
Uses the AD Module to create a subnet in an Active Directory
site.
Param($Subnet, $SiteName)
Create the subnet for the specified site
function create_subnet($_subnet, $_sitename)

{
 # Get the DN of the configuration partition
 $cnfg = (Get-ADRootDSE).ConfigurationNamingContext

 # Build the DN of the site that was passed in
 $site_dn = “cn=$($_sitename),cn=Sites,$($cnfg)”
 # Build the DN of the Subnets container
 $subnets_dn = “cn=Subnets,cn=Sites,$($cnfg)”
 # Create the subnet object in the Subnets container

 New-ADObject -Name $_subnet -Path $subnets_dn -Type Subnet
 -OtherAttributes @{siteObject=$site_dn}
}
Check to ensure that the correct parameters were specified for
the script
if ($Subnet -eq $null -or $SiteName -eq $null)
{
 $script_name = $MyInvocation.MyCommand.Name
 Write-Host “‘nMissing or invalid parameters. Please ensure ” +
 “that you include both a subnet using CIDR notation and” +
 “ the name of the site that you want to add the subnet to.”
 Write-Host “‘nExample:”
 Write-Host “‘t$($script_name) -Subnet 192.168.0.0/24 -SiteName” +
 “ Baltimore”
 Exit
}
Attempt to create the subnet in the specified site
try
{
 create_subnet $Subnet $SiteName
 Write-Host “‘nSubnet $($Subnet) successfully created and added” +
 “ to the $($SiteName) site.”
}
catch
{
 Write-Host “‘nCould not create the subnet for site $($SiteName):”
 Write-Host “‘t$_”
}

Remove a Subnet
Subnet objects are associated with sites based on their siteObject attribute.
Therefore, the only thing required to remove a subnet is to delete its
object. No additional cleanup is needed on any of the existing site objects
in the forest. To remove a subnet with ADSI, use the following process:

1. Retrieve the DN of the forest's configuration partition. The
following command stores the configuration partition DN for the
current forest in the $cnfg variable:
$cnfg = ([ADSI]“LDAP://RootDSE”).configurationNamingContext

2. Build out the DN of the subnet that you want to delete. Because all
subnet objects are stored in the Subnets container, you only need the
CIDR name of the subnet to build out the DN:
$subnet_dn = “cn=192.168.0.0/24,cn=Subnets,cn=Sites,$cnfg”

3. Connect to the subnet object, and call the DeleteTree method. Doing so
deletes the subnet object from the container. There is no need to call
the SetInfo() method in this case:
$subnet_obj = [ADSI]“LDAP://$($subnet_dn)”
$subnet_obj.DeleteTree

To remove a subnet object with the AD module, you can run the Remove-
ADObject cmdlet and specify the subnet's DN. The following example
demonstrates this by removing the 192.168.0.0/24 subnet from the
contoso.com forest:
Remove-ADObject “cn=192.168.0.0/24,cn=Subnets,cn=Sites,
cn=Configuration,dc=contoso,dc=com”

Associate Existing Subnets with Sites
It's important to ensure that each network subnet in your environment is
mapped against an Active Directory site. If not, your clients may use a
DC in another site, potentially across the wide area network (WAN) or
maybe even on the other side of the world. If you have an existing subnet
object that isn't associated with a site, you can make the association by
setting the siteObject attribute on the subnet. When using ADSI, you can
use the following steps to associate a subnet with a site:

1. Retrieve the DN of the forest's configuration partition. The
following command stores the configuration partition DN for the
current forest in the $cnfg variable:
$cnfg = ([ADSI]“LDAP://RootDSE”).configurationNamingContext

2. Get the DN of the site to which you want to associate the subnet.
Because all site objects reside in the Sites container, you can build this
string out as a variable if you know the site name:
$site_dn = “cn=Seattle,cn=Sites,$($cnfg)”

3. Build out the DN of the subnet that you want to associate with a
new site. Because all subnet objects are stored in the Subnets container,
you only need the CIDR name of the subnet to build out the DN:
$subnet_dn = “cn=192.168.0.0/24,cn=Subnets,cn=Sites,$($cnfg)”

4. Connect to the subnet object, and call the Put method. Put the DN of
the site in the subnet's siteObject attribute:
$subnet_obj = [ADSI]“LDAP://$($subnet_dn)”
$subnet_obj.Put(“siteObject”, $site_dn)

5. Call the SetInfo() method to make the change in Active Directory:
$subnet_obj.SetInfo()

To associate a subnet with a site using the Active Directory module,
you can use the Set-ADObject cmdlet. You'll need the DN of the subnet
that you're associating with the site in addition to the DN of the site.
The following series of commands retrieves these DNs using the Get-
ADObject cmdlet and then associates the subnet with the site:
$cnfg = (Get-ADRootDSE).ConfigurationNamingContext

$site = Get-ADObject -Filter ‘objectclass -eq “site” -and name
-eq “Baltimore”’ -SearchBase $cnfg

$subnet = Get-ADObject -Filter ‘objectclass -eq “subnet” -and
name -eq “192.168.0.4/32”’ -SearchBase $cnfg

Set-ADObject $subnet.DistinguishedName -Replace
@{siteObject=$site.DistinguishedName}

Work With Site Links
Site links are an important piece of your site topology. A site link
represents a connection between Active Directory sites. In most cases, a
site link should represent a connection between two sites. Sometimes
more than two sites in a site link can be appropriate, but this is typically
the case when you're using sites directly connected to an Asynchronous
Transfer Mode (ATM) backbone. For site links that represent typical
point-to-point WAN connections, you should have only two sites in the
site link.

Site links specify a couple of different settings as well. The most

important settings are outlined in Table 3.1.

Table 3.1 Site Link Settings
Setting Description Attribute

Site-link
cost

The cost determines how expensive it is for Active Directory to communicate with DCs across the
site. This is an arbitrary number that is weighted relative to other site links. The higher the number,
the more expensive the connection. For example, if there are two site links that AD can choose from,
one with a cost of 50 and another with a cost of 100, AD will choose to contact the DC in the site
associated with the site link that costs 50.

cost

Replication
interval

The replication interval specifies how many minutes must pass before inter-site replication occurs.
The lowest value for this setting is 15 minutes. If it's set to 15 minutes, then Active Directory
replication occurs between sites in this site link at 15-minute intervals.

replInterval

Schedule
This is the schedule that shows when the site is available for replication. For example, if you don't
want replication to occur during certain hours of the day because of WAN bandwidth concerns, you
can black-out replication for that time period in the schedule.

schedule

Site list This specifies the sites that are associated with the site link. siteList

Create a Site Link
When you create a site link, you're required to give Active Directory
some of the aforementioned information about the site link. In particular,
the one attribute that is required is siteList, which contains the DN of each
site associated with the site link.

Another important attribute that you should pass in is the site-link cost.
As mentioned in Table 3.1, the cost determines how likely it is that
Active Directory will use one site link over another. This number is
completely arbitrary and left up to you to decide. Whether you use a cost
of 100 for one site and 50 for another has no significance over using costs
of 10 and 5. If you expect to expand to other sites in the future or
anticipate network-connection upgrades, you should use a system for site-
link costs that gives you some flexibility. When determining the cost of
your site links, you should keep three things in mind: bandwidth,
saturation, and latency. All three of these items affect Active Directory's
performance across sites. Most people make the mistake of basing their
site-link costs purely on bandwidth. However, in most cases, replication
uses remote procedure calls (RPCs), which are synchronous. This means
the DC waits for a response before proceeding with the next RPC call. If
there is high latency in the network, replication over that site link will be

very slow, because the latency for each RPC call adds up. In this case,
you may want to opt to use a lower-bandwidth connection with lower
latency instead of a higher-bandwidth connection with lots of latency. In
this case, the lower-bandwidth connection has a smaller cost than the
higher-bandwidth connection.

The other important attribute you'll give to the site link is the
replication interval. This is expressed in minutes and determines how
often replication occurs over the site link. By default, this number is 180
minutes, although you can lower it to as little as 15 minutes. This number
affects replication convergence, so you should ensure that you factor in
how fast you want replication to converge when you determine the
replication interval.

To create a site link in Active Directory, you need to create a siteLink
object under the site-link container that corresponds to the protocol you
want to use. If you want to use the Internet Protocol, then the container is
cn=IP,cn=Inter-Site Transports, cn=Sites,<configuration partition DN>. For the
Simple Mail Transfer Protocol, it's cn=SMTP,cn=Inter-Site Transports,

cn=Sites,<configuration partition DN>. The difference is that SMTP is
asynchronous and not RPC-based. Therefore, using SMTP is ideal for site
links that have high network latency. However, SMTP replication is
limited to replicating data between DCs in different domains. SMTP can
replicate the configuration partition, the schema partition, and the read-
only global catalog partitions, but not writable domain partitions.
Because of this, you'll probably use IP-based site links in most situations.
The PowerShell script in Listing 3.10 can be used to create site links in
your forest.

Listing 3.10: CreateSiteLink-ADSI.ps1

File Name: CreateSiteLink-ADSI.ps1
Description: Creates a site link in Active Directory with the
information passed into the script.
param([string]$Name, [string]$Type=“IP”, [string]$Site,
 [int]$Cost=100, [int]$Interval=60)

Creates a site link in the current forest
function create_sitelink($sitelinkname, $sitelinktype, $sitename,
 $cost, $interval)
{
 # Get the configuration partition
 $cnfg = ([ADSI]“LDAP://RootDSE”).configurationNamingContext
 # Determine whether to use an IP or SMTP based site link
 $type = “CN=IP”
 if ($sitelinktype -like “smtp”) { $type = “CN=SMTP” }
 # Get the site link container

 $sitelinkcn = [ADSI](“LDAP://$type,cn=Inter-Site Transports,
 cn=Sites,$cnfg”)
 # Get the DN of the site added to the link
 $sitedn = get_sitedn $sitename
 # Create the site link
 $sitelink = $sitelinkcn.Create(“siteLink”, “cn=$sitelinkname”)
 $sitelink.Put(“cost”, $cost)
 $sitelink.Put(“replInterval”, $interval)
 $sitelink.PutEx(2, “siteList”, @(“$sitedn”))
 $sitelink.SetInfo()
}
Takes in the friendly name of a site and returns the DN
function get_sitedn($sitename)
{
 # Get the configuration partition
 $cnfg = ([ADSI]“LDAP://RootDSE”).configurationNamingContext

 # Build the site's DN
 $sitedn = “CN=” + $sitename + “,CN=Sites,” + $cnfg
 # Test the site DN by attempting to connect to the object
 $siteobj = [ADSI](“LDAP://” + $sitedn)
 # If we could not connect to the object, throw an error
 if ($siteobj.distinguishedName -eq $null) { Throw }
 # Return the site's DN
 return $sitedn
}
Prints out information for how to use the script
$script_name = $MyInvocation.MyCommand.Name
function print_usage
{
 Write-Host “One or more parameters are missing.”
 Write-Host
 Write-Host “Required Parameters:”
 Write-Host “ -Name <string>”
 Write-Host “ -Site <string>”
 Write-Host
 Write-Host “Optional Parameters:”
 Write-Host “ -Type <string> (IP or SMTP)”
 Write-Host “ -Cost <int>”
 Write-Host “ -Interval <int>”
 Write-Host
 Write-Host “Example:”
 Write-Host “ $script_name -Name USSiteLink -Site Baltimore”
}
If the Name and Site parameter are present, add the site. Otherwise,

print out the usage information.
if ($Name -and $Site)
{
 create_sitelink $Name $Type $Site $Cost $Interval
}
else
{
 print_usage
}

Add a Site to a Site Link
After a site link is created, you'll likely to need to add sites to the link.
You can add sites to the link by appending the DNs of the sites to the
siteList attribute on the site link's object. The PowerShell script in Listing
3.11 allows you to add a site to an existing site link.

Listing 3.11: AddSiteToSiteLink-ADSI.ps1

File Name: AddSiteToSiteLink-ADSI.ps1
Description: Uses ADSI to add a site to a site link.
param([string]$Name, [string]$Site, [string]$Type=“IP”)
Adds a site to an existing site link
function add_site_to_sitelink($sitename, $sitelinkname, $sitetype)
{
 # Get the site link DN
 $sitelinkdn = get_sitelinkdn $sitelinkname $sitetype

 # Get the site DN
 $sitedn = get_sitedn $sitename

 $sitelink = [ADSI]“LDAP://$sitelinkdn”
 $sitelink.PutEx(3, “siteList”, @(“$sitedn”))
 $sitelink.SetInfo()
}
Takes in the friendly name of a site link and its type and returns
the DN
function get_sitelinkdn($sitelink, $type)
{
 # Get the configuration partition
 $cnfg = ([ADSI]“LDAP://RootDSE”).configurationNamingContext

 # Build the site link's DN
 $type = “CN=IP”
 if ($sitelinktype -like “smtp”) { $type = “CN=SMTP” }

 # Get the site link dn

 $sitelinkdn = “cn=$sitelink,$type,cn=Inter-Site Transports,
cn=Sites,$cnfg”

 # Test the site link DN by attempting to connect to the object
 $sitelinkobj = [ADSI](“LDAP://” + $sitelinkdn)
 # If we could not connect to the object, throw an error
 if (!$sitelinkobj.distinguishedName) { Throw }
 # Return the site's DN
 return $sitelinkdn
}
Takes in the friendly name of a site and returns the DN
function get_sitedn($sitename)
{
 # Get the configuration partition
 $cnfg = ([ADSI]“LDAP://RootDSE”).configurationNamingContext
 # Build the site's DN
 $sitedn = “CN=” + $sitename + “,CN=Sites,” + $cnfg
 # Test the site DN by attempting to connect to the object
 $siteobj = [ADSI](“LDAP://” + $sitedn)
 # If we could not connect to the object, throw an error
 if (!$siteobj.distinguishedName) { Throw }

 # Return the site's DN
 return $sitedn
}
Prints out information for how to use the script
$script_name = $MyInvocation.MyCommand.Name
function print_usage
{
 Write-Host “One or more parameters are missing.”
 Write-Host
 Write-Host “Required Parameters:”
 Write-Host “ -Name <string>”
 Write-Host “ -Site <string>”
 Write-Host
 Write-Host “Optional Parameters:”
 Write-Host “ -Type <string> (IP or SMTP)”
 Write-Host
 Write-Host “Example:”
 Write-Host “ $script_name -Name USSiteLink -Site Seattle”
}
If the Name and Site parameter are present, add the site. Otherwise,
print out the usage information.
if ($Name -and $Site)
{
 add_site_to_sitelink $Site $Name $Type

 Write-Host “Site $Site successfully added to the site link
 $Name”
}
else
{
 print_usage
}

Manage Site Settings

Earlier in this chapter, we looked at how to build a site topology using
PowerShell. However, there are settings outside of the site topology
design that also affect the behavior of Active Directory and how it
interacts with end users. In this section, you'll learn about global catalog
servers, Universal Group Caching (UGC), domain controller (DC)
coverage, and other site settings that are crucial to a good and consistent
experience for your end users.

Determine Which Sites Don't Have Global Catalog
Servers
In a forest with multiple domains, each domain is only aware of its own
data. To find objects in other domains in the forest, you would have to
connect to each domain and search them independently. To solve this
problem, Active Directory provides the global catalog so you can search
in one place for objects across the forest. The global catalog is a special
responsibility. DCs that are designated as global catalog servers contain
additional read-only partitions in their directory database. These
partitions each represent a subset of objects in another domain in the
forest. When a search is performed against the global catalog, the DC
returns not only the results from its typical partitions, but also the results
from the global catalog partitions. For more information on the global
catalog, see the section “Manage the Global Catalog Settings” in Chapter
4, “Managing Domain Controllers.”

In most cases, you'll want to ensure that at least one DC in every site
can serve a global catalog server. Not having a global catalog can impact
the site's logon speed, and a global catalog is often required by forest-
wide applications such as Microsoft Exchange Server. To determine
which sites don't contain global catalog servers, you can enumerate the
sites in Active Directory and evaluate each of the DCs in the site. The
object that represents the DC in the configuration partition has an
attribute called msDS-isGC, which determines whether a DC contains the

global catalog.
If you're using ADSI, you can use the following steps to determine

whether a site has a global catalog server:
1. Connect to the Sites container in the forest's configuration partition,
and get a collection of every site. The following commands store this
data in the $sites variable:
$cnfg = ([ADSI]“LDAP://RootDSE”).configurationNamingContext
$sitescn = [ADSI]“LDAP://CN=Sites,$cnfg”
$sites = $sitescn.Children

2. The child objects in the Sites container contain site objects and also
other object types. Use a foreach statement to loop through each of the
objects. Inside the foreach statement, use an if statement to ensure that
you only work with the site objects. To do this, you can examine the
objectCategory attribute and determine whether it starts with CN=Site,.
Doing so helps you determine whether the object is a site object. The
resulting code block resembles the following:
Loop through each object in the Sites container
foreach ($site in $sites.children)
{
 # We only care about the Site objects, so filter out
 # everything else by using an if statement
 if ($site.objectCategory -like “CN=Site,*”)
 {
 ...
 }
}

3. Each site object will have a Servers container that holds the Server
objects. Each Server object is represents a DC in the site. Connect to
the Servers container so you can read the Server objects from it. The
following commands store the DN of the Sites container in the $sitedn
variable. Then, a connection is made to the Servers container and stored
in the $servers variable:
$sitedn = $site.distinguishedName
$servers = [ADSI]“LDAP://cn=Servers,$sitedn”

4. To determine whether the DC is a global catalog server, you
examine an attribute on each of the server objects. Therefore, the next
step is to use another foreach loop on the Servers container to examine

the server objects. Each server object has a child object with the type
nTDSDSA and the common name CN=NTDS Settings. This is the object you
examine for the global catalog setting:
Loop through each of the Server objects in the Servers
container
foreach ($server in $servers.children)
{
 # Get the DN of the server
 $serverdn = $server.distinguishedName

 # Connect to the nTDSDSA object for the server
 $ntdsobj = [ADSI]“LDAP://cn=NTDS Settings,$serverdn”
 ...
}

5. To determine whether the DC is a global catalog server, ADSI
provides the Options property on the server object. If this property is
equal to 1, then the DC is also a global catalog server. Otherwise, if
Options is equal to 0, the DC isn't a global catalog server:
$isgc = $ntdsobj.Options
if ($isgc -eq 1)
{

 Write-Host “Global Catalog server found:
$($server.name)”
}

The script in Listing 3.12 puts these steps together and prints out a
list of sites that don't have a global catalog server.

Listing 3.12: GetSitesWithoutGCs-ADSI.ps1

File Name: GetSitesWithoutGCs-ADSI.ps1
Description: Uses ADSI to print a list of sites that don't have
Global Catalog servers in them.
Get the DN of the configuration partition in the current forest
$cnfg = ([ADSI]“LDAP://RootDSE”).configurationNamingContext
Get the DN of the Sites container
$sites = [ADSI]“LDAP://CN=Sites,$cnfg”
Print script banner
Write-Host
Write-Host “Sites without Global Catalog Servers”
Write-Host “====================================”
Loop through each object in the Sites container
foreach ($site in $sites.children)
{
 # Ensure that we only work with Site objects
 if ($site.objectcategory -like “CN=Site*”)

 {
 # Connect to the Servers container
 $sitedn = $site.distinguishedName
 $servers = [ADSI]“LDAP://cn=Servers,$sitedn”
 # Reset variables used for storing DC information
 $hasgc = $false
 # Loop through each Server object
 foreach ($server in $servers.children)
 {
 # Connect to the nTDSDSA object for the server
 $serverdn = $server.distinguishedName
 $ntdsobj = [ADSI]“LDAP://cn=NTDS Settings,$serverdn”
 # Determine if the server is a GC. If so, set the $hasgc
 # variable to true
 if ($ntdsobj.Options -eq 1)
 {
 $hasgc = $true
 }
 }
 # If the site has no GCs, then display the site's name
 if (!$hasgc)
 {
 Write-Host “ $($site.name)”
 }
 }
}

When you're using the Active Directory module, the process for
determining whether a DC is a global catalog is slightly different. The
primary difference is that you can use the Get-ADObject cmdlet, which
allows the use of filters. For example, the following command uses Get-
ADObject to get all the site objects from the Sites container.
$sites = Get-ADObject -Filter ‘objectclass -eq “site”’
 -SearchBase $sitesdn

When you use the Get-ADObject cmdlet, you don't need to run if
statements to filter out the objects you don't want. After you obtain the
list of sites, you can use a foreach loop to enumerate the sites and obtain a
list of the nTDSDSA objects in the site without having to enumerate the
servers:
foreach ($site in $sites)
{
 # Get the nTDSDSA objects in the site

$ntdsobjs = Get-ADObject -Filter ‘objectclass -eq

“nTDSDSA”’-SearchBase $site.DistinguishedName -Properties
Options
 ...

}

The script in Listing 3.13 uses the Active Directory module to get a list
of sites without global catalog servers. This script is functionally
equivalent to the previous ADSI-based script.

Listing 3.13: GetSitesWithoutGCs-ADModule.ps1

File Name: GetSitesWithoutGCs-ADModule.ps1
Description: Uses the Active Directory Module to print a list of sites
that don't have Global Catalog servers in them.
Get the DN of the Sites container
$rootdse = Get-ADRootDSE
$cnfg = $rootdse.ConfigurationNamingContext
$sitesdn = “CN=Sites,$cnfg”
Get the Site objects

$sites = Get-ADObject -Filter ‘objectclass -eq “site”’
 -SearchBase $sitesdn
Print script banner
Write-Host
Write-Host “Sites without Global Catalog Servers”
Write-Host “====================================”
Loop through each object in the Sites container
foreach ($site in $sites)
{
 # Get the nTDSDSA objects in the site

 $ntdsobjs = Get-ADObject -Filter ‘objectclass -eq “nTDSDSA”’
 -SearchBase $site.DistinguishedName -Properties Options
 # Reset variables used for storing DC information
 $hasgc = $false
 # Loop through each nTDSDSA object
 if ($ntdsobjs)
 {
 foreach ($ntdsobj in $ntdsobjs)
 {
 # Determine if the server is a GC. If so, set the
 # $hasgc variable to true
 if ($ntdsobj.Options -eq 1)
 {
 $hasgc = $true
 }
 }
 }

 # If the site has no GCs, then display the site's name
 if (!$hasgc)
 {
 Write-Host “ $($site.name)”
 }
}

Enable Universal Group Caching on All Sites
When a user logs on to the domain, the user could potentially be a
member of a universal group. It's important to ensure that universal group
memberships are included in a user's token, because if a “deny”
permission is associated with the group's membership, you need to ensure
that the user isn't granted access to a resource they shouldn't have access
to. Universal group memberships can occur across domains in a forest.
Therefore, a global catalog server must be contacted when a user logs in
to determine which universal groups the user is a member of. If no global
catalog server is available in the site, you need to contact a global catalog
server in another site. To reduce the network traffic associated with this
process, Windows Server 2003 introduced the ability to cache universal
group memberships.

How Universal Group Caching Works
When Universal Group Caching (UGC) is enabled for an Active Directory
site, the DC in the site that authenticates the user obtains universal group
memberships from a global catalog server in another site. By default, the
site is determined by site-link cost, although you can override this value
and set a preferred site.

The UGC setting for each site is configured on the site's NTDS Site Settings
object under the Options attribute. The Options attribute is a bit field,
meaning that each bit in the attribute corresponds to a unique setting. The
bit 100000 (or hexadecimal 0x20) represents the UGC setting. When this
bit is set to 1, UGC is enabled for the site. If it's set to 0, then UGC is
disabled for the site.

Preserve the Existing Bits
In order to preserve the existing value of the Options attribute, you have to
use a bitwise OR operation in PowerShell. The bitwise OR operation looks at
two binary values. If either one of the values is equal to 1, then the output

is 1. For example, consider the binary number 0001 0100. If you were to OR
this value with 0000 0010, the result would be 0001 0110. You can almost
think of this like a math formula, similar to how 20 + 2 = 22,
 20
+ 2
====
 22

00010100 + 00000010 = 00010110:
 0001 0100
OR 0000 0010
============
 0001 0110

To use the bitwise OR operator in PowerShell, you can use -bor. The
previous example can be stated as follows:
PS C:\> $answer = 00010100 -bor 00000010
PS C:\> $answer
10110

In this case, the leading 0s (the 0s on the left side) are trimmed by
default. However, this doesn't change the answer. This is similar to
writing the number 50,000 instead of 050,000.

Use ADSI to Enable UGC
To use ADSI to enable UGC, you need to first get a copy of the Options
attribute for the site's NTDS Site Settings object:
$sitentds = [ADSI](“LDAP://CN=NTDS Site Settings,CN=Seattle,
CN=Sites,CN=Configuration, DC=contoso,DC=com”)
$options = #sitentds.Get(“Options”)

Then, perform the OR operation against your copy of the Options attribute:
$options = $options -bor 0x20

Finally, set the new value of the Options attribute on the NTDS Site Settings
attribute:
$sitentds.Put(“Options”, $options)
$sitentds.SetInfo()

The script in Listing 3.14 uses these techniques to enable UGC for
every site in the forest.

Listing 3.14: EnableUGC-ADSI.ps1

File Name: EnableUGC-ADSI.ps1
Description: Uses ADSI to enable Universal Group Caching
in all sites in the forest
Get the configuration partition
$cnfg = ([ADSI]“LDAP://RootDSE”).configurationNamingContext
Get the DN of the Sites container
$sites = [ADSI]“LDAP://CN=Sites,$cnfg”
Loop through each object in the Sites container
foreach ($site in $sites.children)
{
 # Filter out everything except Site objects
 if ($site.objectcategory -like “CN=Site*”)
 {
 # Build the DN for the NTDS Site Settings container
 $sitentds = [ADSI](“LDAP://CN=NTDS Site Settings,
 $($site.DistinguishedName)”)
 # Set the UGC flag in the Options attribute. If the first
 # attempt fails then the Options attribute doesn't have a
 # value yet. Therefore, write the UGC directly to the
 # attribute instead of trying to perform a bit-wise OR
 try {

 $sitentds.Put(“Options”, $sitentds.Get(“Options”)
 -bor 0x20)
 }
 catch {
 try {
 $sitentds.Put(“Options”, 0x20)
 } catch { }
 }
 # Update the copy of the NTDS Site Settings object in
 # Active Directory
 try {
 $sitentds.SetInfo()
 Write-Host “UGC enabled: $($site.name)”
 }
 catch {
 Write-Host “Error: $($site.name)”
 }
 }
}

Use the Active Directory Module to Enable UGC
The process of enabling UGC in the Active Directory module is similar,
in that you still have to perform the OR operation against the Options
attribute. However, this process is made easier with the Get-ADObject and
Set-ADObject cmdlets. First, obtain the existing value of the Options attribute:

$ntdssite = Get-ADObject “cn=NTDS Site Settings,

cn=Seattle,cn=Sites,cn=Configuration,DC=contoso,DC=com”
-properties Options
$options = $ntdssite.Options

Next, perform the OR operation with 0x20 on the Options attribute:
$options = $options -bor 0x20

Then use the Set-ADObject cmdlet to write the value back to Active
Directory:
Set-ADObject “cn=NTDS Site Settings,cn=Seattle,cn=Sites,

cn=Configuration,
DC=contoso,DC=com” -Replace @{Options=$options}

The script in Listing 3.15 puts these concepts together and enables UGC
on every site in the forest.

Listing 3.15: EnableUGC-ADModule.ps1

File Name: EnableUGC-ADModule.ps1
Description: Uses the Active Directory Module to enable Universal
Group Caching on all sites in the forest.

Get the DN of the Sites container
$rootdse = Get-ADRootDSE
$cnfg = $rootdse.ConfigurationNamingContext
$sitesdn = “CN=Sites,$cnfg”

Get the Site objects

$sitesettings = Get-ADObject -Filter ‘objectclass -eq
 “nTDSSiteSettings”’ -SearchBase $sitesdn -Properties Options
Loop through each NTDS Site Settings object and enable UGC
foreach ($sitesettingobj in $sitesettings)
{
 $options = $sitesettingobj.Options -bor 0x20
 Set-ADObject $sitesettingobj.DistinguishedName -Replace @
{Options=$options}
}

Disabling UGC
If you want to disable UGC, you can use the same process that you used to enable
it. However, you'll also have to use the binary XOR operator (-bxor). When you XOR a bit
with 1, it toggles the bit to its opposite value. It's almost like flipping a light switch
on or off . XOR always ensures that the light switch is in the opposite position that it's

currently in. To disable UGC, you first ensure that the bit is flipped to 1 by
performing an OR, and then perform an XOR to turn it to 0.

Manual Site-Link Bridging
Site-link bridges are logical groupings of site links that may not have
direct routes between each other. By default in Active Directory, all site
links are bridged, making them transitive. For example, suppose you have
two sites, Site A and Site B, with a site link called LinkAB. Now imagine
that you add an additional site, Site C, and link Site B and Site C with a
new site link, LinkBC. Your site topology looks like the example in
Figure 3.2.

Figure 3.2 Example site topology for site-link bridging

By default, AD will bridge site links LinkAB and LinkBC, making them
transitive. This means that a DC in Site A could potentially replicate data
directly with a DC in Site C. If this is a single-domain environment and
there is a DC in each of the three sites, this topology doesn't make much
sense, because it will always be a lower cost for the DC in Site A to talk
to the DC in Site B instead of talking to the DC in Site C. However,
imagine if there was no DC in Site B. In that case, site-link bridging
would allow the DC in Site A to talk directly with the DC in Site C. If you
were to remove the site-link bridge for LinkAB and LinkBC, then the DC
in Site A wouldn't establish a replication connection with the DC in Site

C.
Therefore, it's typically a good idea to leave on automatic site-link

bridging. The only appropriate time to turn it off is if for some reason
you really don't want replication to occur over a specific route.

Disable Automatic Site-Link Bridging
You can disable automatic site-link bridging on each of the inter-site
transport protocols. To do so, set the 0x02 bit on the Options attribute. When
the value is set to 0, site-link bridging is on. When it's set to 1, site-link
bridging is off. The script in Listing 3.16 uses ADSI to enable or disable
automatic site-link bridging in Active Directory. For more information
on how to set bits on an attribute value, see the earlier section “Enable
Universal Group Caching on All Sites.”

Listing 3.16: BASL-ADSI.ps1

File Name: BASL-ADSI.ps1
Description: Uses ADSI to enable the “bridge all site links”
setting
Get the configuration partition
$cnfg = ([ADSI]“LDAP://RootDSE”).configurationNamingContext
Connect to the IP and SMTP transport containers

$iplinks = [ADSI]”LDAP://CN=IP,CN=Inter-Site Transports,
 CN=Sites,$cnfg”

$smtplinks = [ADSI]”LDAP://CN=SMTP,CN=Inter-Site Transports,
 CN=Sites,$cnfg”
Set the BASL flag in the Options attribute. If the first attempt
fails then the Options attribute doesn't have a value yet. Therefore,
write the BASL value directly to the attribute instead of trying to
perform a binary OR
try {
 if ($args[0] -like “enable”) {
 $options = $iplinks.Get(“Options”) -bor 0x02
 $iplinks.Put(“Options”, $options -bxor 0x02)
 $options = $smtplinks.Get(“Options”) -bor 0x02
 $smtplinks.Put(“Options”, $options -bxor 0x02)
 }
 elseif ($args[0] -like “disable”) {
 $iplinks.Put(“Options”, $iplinks.Get(“Options”) -bor 0x02)
 $smtplinks.Put(“Options”, $smtplinks.Get(“Options”) -bor 0x02)
 }
 else {
 $script_name = $MyInvocation.MyCommand.Name

 Write-Host “Missing or invalid script parameter.”
 Write-Host
 Write-Host “To enable Bridge All Site Links, run:”
 Write-Host “ $script_name Enable”
 Write-Host
 Write-Host “To disable Bridge All Site Links, run:”
 Write-Host “ $script_name Disable”
 }
}
catch {
 try {
 if ($args[0] -like “disable”) {
 $iplinks.Put(“Options”, 0x02)
 $smtplinks.Put(“Options”, 0x02)
 }
 } catch { }
}
Update the copy of the IP and SMTP transport containers in Active
Directory
try {
 $iplinks.SetInfo()
 $smtplinks.SetInfo()
 if ($args[0] -like “disable”) {
 Write-Host “Bridge All Site Links Disabled”
 }
 elseif ($args[0] -like “enable”) {
 Write-Host “Bridge All Site Links Enabled”
 }
}
catch {
 Write-Host “Error”
}

You can also enable or disable site-link bridging using the Active
Directory module. To do so, you still need to flip the 0x02 bit in the Options
attribute, but you can use the Get-ADObject and Set-ADObject cmdlets to do so.
The script in Listing 3.17 uses the Active Directory module to enable or
disable site-link bridging.

Listing 3.17: BASL-ADModule.ps1

File Name: BASL-ADModule.ps1
Description: Uses the Active Directory Module to enable the
“bridge all site links” setting.
Get the DN of the Sites container
$rootdse = Get-ADRootDSE
$cnfg = $rootdse.ConfigurationNamingContext
$sitesdn = “CN=Sites,$cnfg”
Connect to the IP and SMTP transport containers

$links = Get-ADObject -Filter ‘objectclass -eq “interSiteTransport”’

 -SearchBase $sitesdn -Properties Options
Loop through each NTDS Site Settings object and enable UGC
foreach ($link in $links)
{
 if ($args[0] -like “enable”) {
 $options = $link.Options -bor 0x02
 $options = $Options -bxor 0x02

 Set-ADObject $link.DistinguishedName -Replace
 @{Options=$options}
 }
 elseif ($args[0] -like “disable”) {
 $options = $link.Options -bor 0x02

 Set-ADObject $link.DistinguishedName -Replace
 @{Options=$options}
 }
 else {
 $script_name = $MyInvocation.MyCommand.Name
 Write-Host “Missing or invalid script parameter.”
 Write-Host
 Write-Host “To enable Bridge All Site Links, run:”
 Write-Host “ $script_name Enable”
 Write-Host
 Write-Host “To disable Bridge All Site Links, run:”
 Write-Host “ $script_name Disable”
 Exit
 }
}
if ($args[0] -like “enable”) {
 Write-Host “Bridge All Site Links Enabled”
}
elseif ($args[0] -like “disable”) {
 Write-Host “Bridge All Site Links Disabled”
}

Configure Which Sites a Domain Controller Covers
When a site doesn't contain a DC, clients in that site may use a DC in a
poorly connected site for authentication. To help prevent this, Active
Directory uses a feature called automatic site coverage. When a site
doesn't have a DC, a DC in a connected site will register its DNS service
locator records for the site. The DC that registers itself is a DC in the
connected site with the lowest cost. This ensures that clients logging in to
a site without DCs will always use the next-closest DC for authentication.

Typically, this is a preferred configuration. However, when using read-
only domain controllers (RODCs), Windows Server 2003 DCs don't
detect the RODCs in a site as valid. Therefore, Windows Server 2003

DCs will register their DNS service records for a site, even if there are
RODCs. Because of this, you'll generally disable automatic site coverage
on your Windows Server 2003 DCs when you have RODCs in your
domain.

To disable automatic site coverage, you have to modify a Registry key
on each DC. You can use the Registry in PowerShell through the Registry
provider. Use the following steps to disable automatic site coverage on
the DC to which you're currently logged in:

1. In PowerShell, change to the HKEY_LOCAL_MACHINE hive in the Registry:
cd HKLM:

2. Change to the path SYSTEM\CurrentControlSet\Services\Netlogon\Parameters:
cd system\currentcontrolset\services\netlogon\parameters

3. Create a new DWORD value called AutoSiteCoverage, and set it to 0. To do
this, use the New-ItemProperty cmdlet and specify AutoSiteCoverage as the
Name parameter. Use 0 for the Value parameter and DWORD for the
PropertyType parameter:
New-ItemProperty -Path . -Name AutoSiteCoverage -Value 0
 -PropertyType DWORD

Move a Domain Controller to a Different Site
When you add a DC to a domain, by default it will join the site that its IP
address is in. However, you can move the DC to another site. To do this,
you simply have to move the Server object in the site's Servers container to
the Servers container of the target site.

Use ADSI to Move a DC to Another Site
You can use the following steps to move the DC to a different site with
ADSI:

1. Connect to the Servers container in the site to which you want to
move the DC. In the following example, you move the DC named SEA-
DC01 from the Default-First-Site-Name site to the Seattle site.

$target_site = [ADSI]”LDAP://cn=Servers,cn=Default-First-
Site-Name,cn=Sites,cn=Configuration,dc=contoso,dc=com”

2. You need the full LDAP path and the relative distinguished name
(RDN) of the DC's Server object:
$dc_path = “LDAP://

cn=SEA-DC01,cn=Servers,cn=Default-First-
Site-Name,cn=Sites,cn=Configuration,dc=contoso,dc=com”
$dc_rdn = “cn=SEA-DC01”

3. Call the MoveHere function on the target site's object, and pass in the
path and RDN of the DC:
$target_site.MoveHere($dc_path, $dc_rdn)

The script in Listing 3.18 takes the DC's name and target site as input
and moves the DC to the target site.

Listing 3.18: MoveDC-ADSI.ps1

File Name: MoveDC-ADSI.ps1
Description: Moves a Domain Controller to another site
param([string]$DC, [string]$TargetSite)
Takes in the friendly name of a DC and returns the DN of the
server object.
function get_dcpath($dc_name)
{
 # Get the configuration partition
 $cnfg = ([ADSI]“LDAP://RootDSE”).configurationNamingContext
 # Look for the Server object
 $site_cn = [ADSI](“LDAP://cn=Sites,$cnfg”)
 foreach ($site in $site_cn.Children) {

 $servers_cn = [ADSI]”LDAP://cn=Servers,
 $($site.DistinguishedName)”
 foreach ($server in $servers_cn.Children) {
 # Found the server object. Return the DN.
 if ($server.name -like $dc_name) {
 return $server.DistinguishedName
 }
 }
 }
}
Ensure that valid parameters were passed to the script
if (($DC.Length -eq 0) -or ($TargetSite.Length -eq 0)) {
 $script_name = $MyInvocation.MyCommand.Name
 Write-Host
 Write-Host “Missing or invalid parameters”
 Write-Host
 Write-Host “Example:”
 Write-Host “ $script_name -DC SEA-DC01 -TargetSite Seattle”

 Write-Host
 Exit
}
$dc_rdn = “cn=$DC”
$site_rdn = “cn=$TargetSite”
$cnfg = ([ADSI]“LDAP://RootDSE”).configurationNamingContext
$dc_path = get_dcpath($DC)
$site_path = “LDAP://cn=Servers,$site_rdn,cn=Sites,$cnfg”
$target_site = [ADSI]$site_path
try {
 $new_server = $target_site.MoveHere(“LDAP://$dc_path”, $dc_rdn)
 Write-Host
 Write-Host “Server moved successfully”
} catch {
 Write-Host

 Write-Host “An error was encountered when attempting to move
 the server”
}

Use the AD Module to Move a DC to Another Site
When you're using the Active Directory module for PowerShell, you can
take advantage of the Move-ADObject cmdlet to move the server. The two
things you need to move the server are the DN of the server you're
moving and the DN of the location you're moving it to. In this case,
you're moving the server object to the Servers container in another site. To
get the DN, you need to run two Get-ADObject commands:
$new_site = Get-ADObject -Filter ‘objectclass -eq “site” -and

cn -eq “Seattle”’-SearchBase “cn=Sites,cn=Configuration,
dc=contoso,dc=com”

$servers_cn = Get-ADObject -Filter ‘objectclass -eq
“serversContainer”’-SearchBase $new_site.DistinguishedName

After you have the DN of the Servers container in the target site, you
need the DN of the Server object for the DC you're moving:
$dc_obj = Get-ADObject -Filter ‘objectclass -eq “server” -and

cn -eq“SEA-DC01”’ -SearchBase “cn=Sites,cn=Configuration,
dc=contoso,dc=com”

The final step is to call the Move-ADObject cmdlet to perform the move.
Pass in the DN of the server object you're moving. For the TargetPath
parameter, pass in the DN of the target Servers container:
Move-ADObject $dc_obj.DistinguishedName -TargetPath

 $servers_cn.DistinguishedName

The script in Listing 3.19 uses the AD module to move a DC to another
site. This follows the same syntax as the previous script: Pass in the name
of the DC and the name of the site to which you're moving it.

Listing 3.19: MoveDC-ADModule.ps1

File Name: MoveDC-ADModule.ps1
Description: Moves a domain controller to another site using the
AD Module for PowerShell
param([string]$DC, [string]$TargetSite)
Ensure that valid parameters were passed to the script
if (($DC.Length -eq 0) -or ($TargetSite.Length -eq 0)) {
 $script_name = $MyInvocation.MyCommand.Name
 Write-Host
 Write-Host “Missing or invalid parameters”
 Write-Host
 Write-Host “Example:”
 Write-Host “ $script_name -DC SEA-DC01 -TargetSite Seattle”
 Write-Host
 Exit
}
Get the DN of the Sites container
$rootdse = Get-ADRootDSE
$cnfg = $rootdse.ConfigurationNamingContext
$sitesdn = “CN=Sites,$cnfg”
Get the site object for the target site

$target_site = Get-ADObject -Filter ‘objectclass -eq “site” -and
 cn -eq $TargetSite’ -SearchBase $sitesdn
Get the servers container object (where the server is actually
moving to)

$servers_cn = Get-ADObject -Filter ‘objectclass -eq
 “serversContainer”’ -SearchBase $target_site.DistinguishedName
Get the existing server object

$dc_obj = Get-ADObject -Filter ‘objectclass -eq “server” -and cn
 -eq $DC’ -SearchBase $sitesdn
Move the server to another site
try {

 Move-ADObject $dc_obj.DistinguishedName -TargetPath
 $servers_cn.DistinguishedName
 Write-Host
 Write-Host “Server moved successfully”
} catch {
 Write-Host
 Write-Host “An error was encountered when attempting to ” +
 “move the server”
}

Manage Replication
Active Directory is a multimaster directory, meaning that more than one
Domain Controller (DC) can make changes to the data in the directory at
the same time. Active Directory's replication engine is one of the best
replication engines found anywhere in any product on the market. Not
only can the architecture have multiple servers that perform write
operations, but the replication of data occurs on an attribute level. This
means that if you change an attribute in an object (for example, a user's
last name), only the changed attribute is replicated to other DCs.

To accomplish this, Active Directory uses the concept of update
sequence numbers (USNs). USNs are unique 64-bit numbers maintained
by each DC. Every time an update is made to the database on that DC, the
USN is incremented. In this way, the update operation is tied to a unique
number. Each DC maintains what it believes to be the current USN of
each of its replication partners; this is referred to as the high watermark
value. When a change is made on a DC, its USN is incremented, and the
DC notifies its replication partners of the new USN value. The replication
partners compare the new USN to their high watermark value for the DC.
From that information, the replication partner knows what changes to
request from the DC.

USNs assist in the replication process, but they also play a vital role in
ensuring that a DC doesn't get updated with the same data multiple times.
Consider the case where one DC is updated by one of its replication
partners, and then another replication partner tries to update it again. In
this case, the DC needs to be able to tell the second replication partner
that it already has the updates so they aren't transferred over the network
again. This process is called propagation dampening, and it's
accomplished using a table stored on each DC called the up-to-dateness
vector (UTDV) table. This table contains the USN of every DC where the
last write operation occurred. When the DC is notified by its second
replication partner that there's a pending change (the watermark it sends

is higher than the DC's copy), the DC responds by sending the replication
partner a copy of its UTDV table. The replication partner compares the
table to its own copy of the UTDV table (which is the same on every DC
after full replication convergence). If they match, then the replication
partner knows the DC already received the updates from another
replication partner. The target DC simply updates its high watermark
value with the current USN of the replication partner rather than polling
it for all of the changes. Because Active Directory replication happens at
the attribute level, this process occurs for every attribute that is changed
on any DC in the forest.

View the State of Replication
When DCs have multiple replication partners, the replication process
outlined previously can get rather complicated. Fortunately, you don't
have to do anything to ensure that replication functions; Active Directory
takes care of this on its own. However, things will go wrong from time to
time, and you may not notice. Therefore, it's important to keep an eye on
replication and make sure it's healthy.

A DC determines who it replicates with by defining a connection object
with each of its partners. These connection objects are created
automatically based on the site topology you've defined. The process that
creates the connection objects is called the Knowledge Consistency
Checker (KCC). The KCC runs periodically and ensures that any changes
to the site topology are reflected in the connection objects for each DC.
For example, if a site-link cost changes and makes replication with a
particular DC more expensive than it was previously, the KCC may have
to generate a new connection object to a less expensive DC to replicate
with. The KCC is really the brains behind how DCs determine who to
replicate with.

There are two types of replication to consider in Active Directory:
intra-site and inter-site. Intra-site replication occurs between DCs that

are in the same site. This replication happens very quickly, within
seconds, over Remote Procedure Calls (RPCs) and therefore assumes that
the connectivity between the DCs in the site is fast and reliable. This is
why you generally want LAN speeds between each of the IP subnets in an
Active Directory site. Inter-site replication occurs between two different
sites. This replication can be based on RPC as well, but there is also the
option to use SMTP messages for inter-site replication. The reason for
using SMTP over RPC is primarily concerned with network latency. RPC
is a synchronous protocol, meaning that it sends a packet command and
waits for a response before sending another command. If you have a
network with high latency, your DC may be waiting a while before it
sends the next command. On the other hand, SMTP is asynchronous,
meaning that it can issue a series of commands one after the other
without needing a response in between. The latency doesn't change; but
rather than incurring the response latency after each issued command,
SMTP incurs it much less frequently and therefore is better for high-
latency networks. The most common use case for SMTP is for replicating
Active Directory data over sites connected by satellite communication
links.

List the Bridgehead Servers in a Site
When replicating data across sites, the KCC process assigns one DC in
the site the role of the inter-site topology generator (ISTG). This job of
this DC is to determine which DCs in the site will act as bridgeheads.
Bridgeheads are the DCs that replicate data between sites. Inter-site
replication traffic only occurs from the bridgehead server in one site to
the bridgehead server in another site.

Back in Windows 2000, you could have only one bridgehead per site for
each directory partition. This was particularly problematic in hub-and-
spoke site topology architectures, because a single DC in a hub site could
easily be overburdened when faced with dozens of replication partners. In
Windows 2003, however, Microsoft added the ability to have multiple

bridgehead servers for each site. By using multiple bridgehead servers,
you can spread the inter-site replication load across multiple DCs.

To determine whether a server is a bridgehead server, you can examine
the connection objects that the KCC created for the server. If there is a
connection object with a server in another site, then the server is
considered a bridgehead server. The script in Listing 3.20 enumerates
each server in each site in the forest and examines the connection objects
to determine which servers are bridgehead servers. The list of bridgehead
servers for each site is displayed.

Listing 3.20: ListBH-ADSI.ps1

File Name: ListBH-ADSI.ps1
Description:
Uses the ADSI to enumerate all of the connection in the
forest and determine which servers are bridgehead servers. The
list of bridgehead servers for each site is displayed.
##
Get the configuration partition
$cnfg = ([ADSI]“LDAP://RootDSE”).configurationNamingContext
Get the Sites container
$site_cn = [ADSI](“LDAP://cn=Sites,$cnfg”)
Loop through each child object in the Sites container
foreach ($site in $site_cn.Children)
{
 # Filter out everything except for Site objects
 if ($site.objectcategory -like “cn=site,*”)
 {
 # Print the header for the list of BH Servers for the site
 Write-Host
 Write-Host “BH Servers for Site: $($site.name)”
 Write-Host “==================================”
 # Get the site's Servers container

 $servers_cn = [ADSI]”LDAP://cn=Servers,
 $($site.DistinguishedName)”
 # Loop through each Server object in the Servers container
 foreach ($server in $servers_cn.Children)
 {
 # Set an internal flag that indicates if we found
 # a BH server
 $isBH = $false

 # Get the NTDS Settings object for the server

 $ntdssettingsobj = [ADSI]”LDAP://cn=NTDS Settings,
 $($server.DistinguishedName)”

 # Loop through each child object under the NTDS Settings
 # object
 foreach ($conobj in $ntdssettingsobj.Children)
 {
 # Filter out everything that's not a connection object

 if ($conobj.objectcategory -like
 “cn=nTDS-Connection,*”)
 {
 # Get a copy of the DN of the source DC and
 # manipulate the string to remove everything
 # except for the site name
 [string]$fromServer = $conobj.fromServer

 $fromServer = $fromServer.Replace(“,
 $($site_cn.DistinguishedName)”, “”)

 $fromServer = $fromServer.Substring(
 $fromServer.LastIndexOf(“=”)+1)
 # Format the name of the site that the server is
 # in. We're going to compare this with the
 # connection object's site to determine whether
 # or not the connection object is with a DC in a
 #different site. This will tell us that this is
 # a bridgehead server
 [string]$sitename = $site.cn
 # Compare the server's site with the connection
 # object's site. If they are different, set the
 # $isBH flag to true

 if ($fromServer.ToUpper() -ne
 $sitename.ToUpper()) {
 $isBH = $true
 }
 }
 }

 # If we've found that the server is a bridgehead,
 # display its name
 if ($isBH -eq $true)
 {
 Write-Host “ $($server.name)”
 }
 }
 }
}

List a Domain Controller's Replication Partners
As mentioned previously, each DC has a list of connection objects that
are automatically created by the KCC. These connection objects each
represent a replication partner to the DC. The script in Listing 3.21
enumerates all the connection objects for each DC and displays a list of

replication partners.

Listing 3.21: GetPartners-ADSI.ps1

File Name: GetPartners-ADSI.ps1
Description:
Uses the ADSI to enumerate all of the connection objects for
each DC in the forest and display the DC's replication
partners.
##
Get the configuration partition
$cnfg = ([ADSI]“LDAP://RootDSE”).configurationNamingContext
Get the Sites container
$site_cn = [ADSI](“LDAP://cn=Sites,$cnfg”)
Loop through each child object in the Sites container
foreach ($site in $site_cn.Children)
{
 # Filter out everything except for Site objects
 if ($site.objectcategory -like “cn=site,*”)
 {
 # Get the site's Servers container

 $servers_cn = [ADSI]”LDAP://cn=Servers,
 $($site.DistinguishedName)”

 # Loop through each Server object in the Servers container
 foreach ($server in $servers_cn.Children)
 {
 # Filter out everything except for Server objects
 if ($server.objectcategory -like “cn=server,*”)
 {
 # Display header for replication partner list

 Write-Host “‘nReplication partners for
 $($server.name) in Site $($site.name):”
 # Get the NTDS Settings object for the server

 $ntdssettingsobj = [ADSI]”LDAP://cn=NTDS Settings,
 $($server.DistinguishedName)”
 # Loop through each child object under the NTDS
 # Settings object
 foreach ($conobj in $ntdssettingsobj.Children)
 {
 # Filter out everything that's not a connection
 # object

 if ($conobj.objectcategory -like
 “cn=nTDS-Connection,*”)
 {
 # Get the site that the replication partner
 # is in and compare it to the server's site
 # to determine if it's an internal or
 # external partner

 $from_ntds = [ADSI]”LDAP://

 $($conobj.fromServer)”
 $parent = [ADSI]“$($from_ntds.parent)”
 $serverscn = [ADSI]“$($parent.parent)”
 $sitecn = [ADSI]“$($serverscn.parent)”
 $type = “Internal”

 [string]$replsite = $sitecn.name
 [string]$thissite = $site.name

 # If the sites are different, then it's an
 # external partner

 if ($replsite.ToUpper() -ne
 $thissite.ToUpper())
 {
 $type = “External”
 }

 # Display the replication partner information
 Write-Host “ $type‘t‘t$($parent.Name)”
 }
 }
 }
 }
 }
}

Tune Replication Settings
In addition to monitoring your replication status, you'll need to tune some
settings every now and then. Replication settings that you may need to
adjust are related to how often replication occurs and with whom. In this
section, we'll explore some things you can do to tune your replication
settings.

Configure a Preferred Bridgehead Server
The ISTG automatically manages which DCs in each site serve as
bridgehead servers for replicating data with other connected sites.
However, you have the option of overriding this and setting a bridgehead
manually if you want to use one or more specific DCs.

You assign this manual bridgehead preference using the
bridgeheadTransportList attribute on the server object. To configure the server
as a preferred bridgehead, add the DN of the transport protocol that you

want to use (either IP or SMTP).

Use ADSI to Configure a Preferred Bridgehead
If you want to use ADSI to configure the preferred bridgehead, the first
step is to connect to the server object:
$server = [ADSI](“LDAP://cn=SEA-DC01,cn=Servers,cn=Seattle,
cn=Sites,cn=Configuration,dc=contoso,dc=com”)

Next, you need the DN of the transport. This example uses the IP
transport:
$iptrans = “CN=IP,CN=Inter-Site Transports,CN=Sites,
CN=Configuration,DC=contoso,DC=com”

The final step is to add the transport DN to the bridgeheadTransportList
attribute on the server object:
$server.PutEx(3, “bridgeheadTransportList”, @(“$iptrans”))
$server.SetInfo()

Use the AD Module to Configure a Preferred
Bridgehead
When using the AD module, you can use the Set-ADObject cmdlet to
configure the preferred bridgehead setting on your DC's server object.
Start by using the Get-ADObject cmdlet to connect to the DC's server object:
$server = Get-ADObject “cn=SEA-DC01,cn=Servers,cn=Seattle,
cn=Sites,cn=Configuration,dc=contoso,dc=com”

Next, ensure that you have the DN of the inter-site transport for which
you'll configure this server as the preferred bridgehead. This example
uses the IP transport:
$link = “CN=IP,CN=Inter-Site Transports,CN=Sites,
CN=Configuration,DC=contoso,DC=com”

Finally, call the Set-ADObject cmdlet, and pass in the DN of the server and
the DN of the inter-site transport you're using. Add the inter-site transport
DN to the multivalued attribute bridgeheadTransportList:

Set-ADObject $server.DistinguishedName -Add
@{bridgeheadTransportList=$link}

Change the Frequency with Which the Automatic
Replication Topology Is Built
The KCC periodically builds the replication topology automatically. The
frequency at which this occurs out of the box is every 15 minutes.
However, you can change this. When you do, the setting affects only the
DC on which you change the interval. To change the frequency, add the
Registry value Repl topology update period (secs) to the following Registry
key:
HKLM\System\CurrentControlSet\Services\NTDS\Parameters

This setting is specified in seconds. If you wanted to change the
frequency to every 30 minutes, for example, you would set the value to
1800. You can use the Registry in PowerShell through the Registry
provider. Use the following steps to change the KCC replication topology
update period on the DC at which you're currently logged in:

1. In PowerShell, change to the HKEY_LOCAL_MACHINE hive in the Registry:
cd HKLM:

2. Change to the path SYSTEM\CurrentControlSet\Services\NTDS\Parameters:
cd system\currentcontrolset\services\ntds\parameters

3. Create a new DWORD value called Repl topology update period (secs), and
set it to the number of seconds you want. In this example, set it to run
every 60 minutes, or 3600 seconds. Use the New-ItemProperty cmdlet to
create the Registry value. Use 3600 for the Value parameter and DWORD for
the PropertyType parameter:
New-ItemProperty -Path . -Name “Repl topology update
period (secs)”-Value 3600 -PropertyType DWORD

Changing this setting to a longer period was sometimes necessary in
the past. In older versions of Windows, the KCC was less efficient, so
when complex architectures were involved, it was less likely that the

KCC would finish the process of automatically generating the
replication topology. Therefore, the period was often increased to give
the KCC the additional time it needed.

Replicate After Lingering Object Issues
When an object is deleted in Active Directory, it's not immediately
removed from the database. Rather, it's put into a special state and
becomes tombstoned. When tombstoned, the object's isDeleted attribute is
set to True and some of its attributes are removed, leaving only a subset of
them in the directory. For all intents and purposes, this object is
considered removed because it can no longer be used.

The purpose of the tombstone is to ensure that every DC knows that the
object was deleted and can process it accordingly. If the object was
deleted from the database immediately without being tombstoned first,
then the deletion couldn't be replicated because the object wouldn't exist.
The interim tombstone state is important because it ensures that each DC
knows about the deletion.

The amount of time that an object resides in the tombstone state before
it's permanently removed is referred to as the tombstone lifetime. The
number of days configured for your tombstone lifetime is determined by
the first DC that was promoted in the forest root domain. This may vary
depending on the evolution of your Active Directory environment. For
example, if your forest started out as a Windows 2000 domain, then the
tombstone lifetime will be 60 days. Windows 2003 and later forests
default to 180 days.

AD Recycle Bin
When you're using a Windows Server 2008 R2 forest, you have the ability to enable
the Active Directory Recycle Bin. The AD Recycle Bin modifies the behavior that
we just discussed. When the AD Recycle Bin is enabled, objects aren't tombstoned
immediately; rather, they reside in the AD Recycle Bin for a period of time before
the tombstone process occurs. We'll discuss the AD Recycle Bin in more detail in

Chapter 10, “Backing Up Data and Recovering from Disasters.”

To understand this better, suppose an object is deleted on a DC named
DC01. DC02 is a replication partner to DC01. Ordinarily, DC02 would be
notified when the USN change occurs on DC01. This indicates that
updates were made to Active Directory that needed to be replicated to
DC02. If DC02 was online and functioning properly, it would poll DC01
for the changes and replicate the tombstoning of the deleted object into
its own copy of the database.

However, if DC02 was offline or not functioning properly, the
tombstone wouldn't replicate to DC02. To make matters worse, if DC02
was offline for more than the tombstone lifetime, then the object might
have already been removed from DC01's database. Therefore, when DC02
came back online, the object would be gone from the domain, along with
the change that was associated with the deletion's USN. In this case,
DC02 wouldn't be aware that the object was deleted and therefore
wouldn't remove it from its own database.

When one DC has an object that other DCs don't have, it's called a
lingering object. You always want your DCs to be in a completely
consistent state, so lingering objects represent a big problem. For
example, if the lingering object is a user account that was deleted from
the forest, the user may still be able to log on with the account if they
happen to authenticate against the DC that contains the lingering object.
If an attribute on the lingering object is updated, it could replicate back
out to the other DCs that it was deleted from, causing the previously
deleted object to be reanimated.

Divergent and Corrupt Replication Partners
One way that Active Directory prevents lingering objects from being
reanimated into the environment is to cut off replication with DCs that
haven't replicated within the tombstone lifetime. If the DC hasn't
replicated within the tombstone lifetime, it's considered divergent

because it could potentially have lingering objects; an error event with an
ID number of 2042 appears in the event logs of its replication partners.
But note that when this happens, it doesn't mean lingering object do exist;
it only means that they could exist. If you're certain that your divergent
DC doesn't have any lingering objects (or if it does, that you've removed
them—see Chapter 7, “Managing Computer Accounts, Objects, and
Organizational Units”), then you can force the DC to replicate even
though the tombstone lifetime has been exceeded.

To allow replication with a divergent DC, you must set the following
Registry key on the DCs that receiving replication from the divergent
DC:
HKLM\SYSTEM\CurrentControlSet\Services\NTDS\Parameters\Allow
Replication With Divergent and Corrupt Partner = 1

After you set this key, you can restart replication on the DC and allow it
to replicate with the divergent DC. After successful replication, you
should go back and reset the Registry key to 0. Doing so will prevent
future divergent DCs from replicating with this partner. Whenever you
see a divergent DC, follow this process:

1. Fix the problem that caused the DC to not replicate for longer than
the tombstone lifetime.
2. Clean up any lingering objects on the divergent DC.
3. Enable the setting to allow replication with divergent and corrupt
partners on the divergent DC's replication partners.
4. Ensure that replication occurs successfully with the divergent DC.
5. Disable the setting to allow replication with divergent and corrupt
partners on the divergent DC's replication partners.

You can use the PowerShell Registry provider to allow replication with
divergent DCs:

1. In PowerShell, change to the HKEY_LOCAL_MACHINE hive in the Registry:
cd HKLM:

2. Change to the path SYSTEM\CurrentControlSet\Services\NTDS\Parameters:
cd system\currentcontrolset\services\ntds\parameters

3. Edit the value Allow Replication with Divergent and Corrupt Partner, and set
it to 1. Use the Set-ItemProperty cmdlet to change the Registry value. Use
1 for the Value parameter. This Registry value name is rather long, so
be sure you spell it correctly:
Set-ItemProperty -Path . -Name “Allow Replication with
Divergent and Corrupt Partner” -Value 1 -PropertyType DWORD

You can also use the script in Listing 3.22 to enable or disable
replication with a divergent DC. When you run this script, pass in either
Enable or Disable as a script parameter.

Listing 3.22: AllowDivergentReplication.ps1

File Name: AllowDivergentReplication.ps1
Description:
Enables or disables the ability for a Domain Controller to
replicate with a DC that has not replicated a partition for ## longer than the tombstone lifetime of the forest
$key_path = “HKLM:\system\CurrentControlSet\services\NTDS\Parameters”
$key_name = “Allow Replication with Divergent and Corrupt Partner”
if ($args[0] -like “enable”) {
 Set-ItemProperty -Path $key_path -Name $key_name -Value 1
 Write-Host “Replication with divergent DC ENABLED successfully”
}
elseif ($args[0] -like “disable”) {
 Set-ItemProperty -Path $key_path -Name $key_name -Value 0
 Write-Host “Replication with divergent DC DISABLED successfully”
}
else {
 $script_name = $MyInvocation.MyCommand.Name
 Write-Host “Missing or invalid script parameter.”
 Write-Host
 Write-Host “To enable replication with a divergent DC, run:”
 Write-Host “ $script_name Enable”
 Write-Host
 Write-Host “To disable replication with a divergent DC, run:”
 Write-Host “ $script_name Disable”
}

Strict Replication Consistency
You can also prevent the spread of reanimated lingering objects by using
the strict replication consistency setting. When strict replication
consistency is enabled, the DC doesn't receive replicated updates for
objects that it doesn't have a copy of. If a lingering object is updated on a

DC, the replication partner cuts off replication to the entire partition from
the DC with the lingering object. When this happens, errors with event ID
1988 are shown in the target DC's (the DC that doesn't have the lingering
objects) event logs.

It's important to enable strict replication consistency to prevent a
lingering object from being reanimated. But keep in mind that if strict
replication consistency isn't enabled and then you enable it, you may
potentially stop replication for partitions that contain lingering objects.
Therefore, take care when enabling strict replication consistency.

Depending on the configuration of your domain, you may already have
strict replication consistency turned on by default. The strict replication
consistency setting was introduced in Windows Server 2003; in a forest
that started out as a Windows Server 2003 forest, the DCs will enable
strict replication consistency by default. However, if the forest started out
as a Windows 2000 forest and was upgraded to Windows 2003, strict
replication consistency won't be turned on by default in newly promoted
DCs. Windows Server 2003 and newer DCs will check for the existence
of the following object during the promotion process:
CN=94fdebc6-8eeb-4640-80de-ec52b9ca17fa,CN=Operations,
CN=ForestUpdates,CN=Configuration,DC=domain,DC=com

If the object exists in the configuration partition, then the DC being
promoted will enable strict replication consistency. You can create this
object in a forest using the script in Listing 3.23.

Listing 3.23: CreateSRConsistencyObject.ps1

File Name: CreateSRConsistencyObject.ps1
Description:
Creates the object used for automatic enablement of strict
replication consistency in the forest.
Get the DN of the configuration partition
$cnfg = ([ADSI]“LDAP://RootDSE”).configurationNamingContext
Connect to the Operations container
$ops_dn = “CN=Operations,CN=ForestUpdates,$cnfg”
$ops_obj = [ADSI]“LDAP://$ops_dn”
Connect to the Strict Replication Consistency container object
$sr_cn = “CN=94fdebc6-8eeb-4640-80de-ec52b9ca17fa”
$sr_dn = “$sr_cn,CN=Operations,CN=ForestUpdates,$cnfg”

$sr_obj = [ADSI]“LDAP://$sr_dn”
If the object already exists, say so
if ($sr_obj.DistinguishedName)
{
 Write-Host “SR Consistency object already exists”
}
else
{
 # Create the object
 try
 {
 $sr_obj = $ops_obj.Create(“container”, $sr_cn)
 $sr_obj.Put(“showInAdvancedViewOnly”, $true)
 $sr_obj.SetInfo()

 Write-Host “The SR Consistency object was successfully
 created”
 }
 catch
 {
 Write-Host “There was an error creating the object”
 }
}

Creating this object doesn't automatically enable strict replication
consistency; it only ensures that new DCs enable it during the promotion
process. Existing DCs must have strict replication consistency enabled
manually. This requires a Registry change on the DCs, so you can use the
PowerShell Registry provider.

To enable strict replication consistency on a DC, first create a DWORD
value called Strict Replication Consistency in the following Registry key:
HKLM\System\CurrentControlSet\Services\NTDS\Parameters

Set this value 1. If you set it 0, strict replication consistency will be
disabled. Use the following steps to enable strict replication consistency
on the DC at which you're currently logged in:

1. In PowerShell, change to the HKEY_LOCAL_MACHINE hive in the Registry:
cd HKLM:

2. Change to the path SYSTEM\CurrentControlSet\Services\NTDS\Parameters:
cd system\currentcontrolset\services\ntds\parameters

3. Create a new DWORD value called Strict Replication Consistency, and set it
to 1. Use the New-ItemProperty cmdlet to create the Registry value. Use 1
for the Value parameter and DWORD for the PropertyType parameter:

New-ItemProperty -Path . -Name “Strict Replication
Consistency” -Value 1 -PropertyType DWORD

Chapter 4

Managing Domain Controllers

IN THIS CHAPTER, YOU WILL LEARN TO:
MANAGE HOW THE ACTIVE DIRECTORY SERVICE IS
PROVIDED

Install Active Directory on the Domain Controller
Work with the FSMO Roles
Manage the Global Catalog Settings

MANAGE SERVER-SPECIFIC SETTINGS
Manage Domain Controller Settings
Manage the Active Directory Database

In this chapter, you'll automate the installation and configuration of
domain controllers, the individual servers that authenticate users and
other security principals to your Active Directory domain. Each AD
domain requires a minimum of one DC to function, though even the
smallest environments should have a minimum of two installed in order
to provide availability in case one fails.

In the first section, we'll examine the steps needed to install DCs in and
remove them from an AD domain, both writeable DCs as well as read-
only DCs (RODCs). We'll also cover the steps needed to manage the
Flexible Single Master of Operation (FSMO) roles within a domain and a
forest, as well as configure the role of the AD global catalog (GC) server.

Once you've deployed a number of DCs in your environment, the next
section explores the tasks needed to manage server-specific settings on
individual DCs. This includes tasks such as renaming a DC and managing
the AD service and where AD files are stored on an individual DC, as

well as performing maintenance tasks such as offline defragmentation
operations and moving files from one location to another.

Manage How the Active Directory Service
Is Provided

In this section, we'll discuss the steps needed to deploy and configure the
AD service on your network. Providing this service consists of deploying
at least one DC in each domain, or more to provide high availability and
better performance for geographically dispersed users.

We'll begin by describing the steps needed to deploy individual AD
DCs, both writeable DCs and read-only DCs. This includes installing DCs
using the dcpromo process, which may be customized depending on the
installations scenario: creating a new domain, adding an additional DC to
an existing domain, or customizing other parameters of the DC
installation. We'll also describe how to remove a DC from an AD domain.

After covering the DC installation process, we'll examine how to
manage the FSMO role holders in a forest and a domain, as well as the
AD GC role that may be added to one or more DCs in each domain.

Install Active Directory on the Domain Controller
In a large or complex environment, one of the more common tasks you
may perform is installing AD onto one or more new DCs. You'll need to
plan your DC placement strategy to accommodate the size of your
environment, how many AD sites you've configured, the number of users
and devices in those sites, and the speed of the network links between
sites. You can find detailed guidance about making these determinations,
based on the specific speed of your WAN links and the number of users
in each location, by referencing the Infrastructure Planning and Design
guide for Active Directory Domain Services, available as a free download

here:
www.microsoft.com/downloads/en/details.aspx?FamilyID=
ad3921fb-8224-4681-9064-075fdf042b0c&displaylang=en

Depending on the specific requirements for the location where you're
installing the DC, you may wish to install a writeable DC, or you may
wish to install an RODC. As the name implies, an RODC hosts a read-
only copy of the AD database that allows users to authenticate to a local
DC without the risk that any malicious or inadvertent changes made to
that DC will replicate to the rest of the domain or forest. Because of this,
RODCs may be a better choice than writeable DCs for locations where
you can't necessarily guarantee the physical security of the DC hardware.
You may also control which users' and computers' passwords are cached
locally on the RODC, which is another significant difference from a
writeable DC. By default, no user or computer passwords are cached on
an RODC; you need to indicate the specific users and computers whose
password information may be cached locally on the RODC. All other
authentication requests are proxied back to a writeable DC. In the AD
Users & Computers MMC, this is indicated as the list of “Accounts that
have been authenticated to this Read-only Domain Controller,” as shown
in Figure 4.1.

Figure 4.1 List of users who have authenticated

In addition to using the security controls offered by the RODC, you
may need to promote a DC residing in a remote location that is separated
from your main data center by a slow or heavily utilized WAN link.
Beginning in Windows Server 2003, you can speed this process by using
the Install From Media (IFM) feature, which allows you to source your
new DC from a recent system-state backup of another DC within the
domain. In this way, only information that has changed since the time of
the source backup needs to be replicated over the network, rather than the
entire AD database.

Promote a Server to a Writeable Domain Controller

Dcpromo.exe possesses a significant number of command-line options that
allow you to customize the behavior of the DC promotion process to fit
your needs. You can either enter the necessary parameters on the same
command line as dcpromo or record the parameters into a separate text file
for reuse in subsequent domain promotions.

Listing 4.1 shows the command-line switches necessary to add a new
writeable DC into the contoso.com AD domain. You can see that the AD
database, log files, and SYSVOL directories have been separated onto three
separate drives: the AD database stored at d:\ntds, the AD logs stored at
e:\ntdslogs, and SYSVOL stored at f:\sysvol. Also note that the DNS Server
service will be installed on this DC during the dcpromo process.

Listing 4.1: Creating a Writeable Domain Controller

dcpromo /unattend /replicaOrNewDomain:replica /InstallDns:yes
/databasePath:“d:\ntds” /logPath:“e:\ntdslogs” /
sysvolpath:“f:\sysvol” /safeModeAdminPassword:DS%sdr5!@V8d3 /
rebootOnCompletion:yes

Promote a Server to a Read-Only Domain
Controller
When you're adding an RODC to an AD domain, there are a number of
prerequisite steps that need to be accomplished first. The forest in
question must be running at the Windows Server 2003 forest functional
level. At least one Windows Server 2008–writeable DC must be deployed
within the domain in which you want to deploy an RODC, and you must
have run adprep /domainprep /rodcprep in that domain. The dcpromo.exe
command-line tool may also be customized to decommission an existing
AD domain. In order to decommission an AD, you must first demote any
other DCs in the domain.

You can configure a number of additional parameters when deploying
an RODC, most notably around the Password Replication Policy (PRP) on
the RODC. The PRP consists of attributes on the RODC's AD computer

account that denote the following:
A list of users, groups, and computers whose password secrets may
be cached on this RODC
A list of users, groups, and computers whose password secrets may
not be cached on this RODC

You can see an example of the PRP in Figure 4.2.

Figure 4.2 Viewing a PRP

Note that this list designates the list of accounts whose passwords are
permitted to be cached; it doesn't mean these accounts' passwords have
been cached there. A password will only be cached to a particular RODC

if that user (or computer) account has actually authenticated to the RODC
in question, at which point the accounts are added to the so-called
Revealed list (indicating that the password has actually been revealed to
the RODC). When this has happened, you'll see the account listed in the
Active Directory Users & Computers MMC, as shown in Figure 4.3.

Figure 4.3 Viewing the Revealed list

You can also specify the delegated administrator of a particular RODC,
which denotes a user or group that can [1] locally administer the RODC
without conferring any domain administration permissions to them, and
[2] complete the two-stage dcpromo process.

Specifying the Destination Site
You can see the SiteName= switch listed in the answer file in Listing 4.2. If you wish to
specify the AD site name in this manner, the site in question must already be
configured within AD; the use of this switch in the answer file won't create the site
for you.

Listing 4.2 includes the contents of an answer.txt file that promotes an
RODC in the east.contoso.com domain.

Listing 4.2: Creating a Read-Only Domain Controller

dcpromo /unattend:answer.txt

[DCINSTALL]
UserName=dcadmin
UserDomain=east.contoso.com
ReplicaDomainDNSName=east.contoso.com
PasswordReplicationDenied=EAST\Domain Admins,EAST\Server
Operators,EAST\Account Operators,CONTOSO\Domain Admins,CONTOSO\
Schema Admins,CONTOSO\Enterprise Admins
PasswordReplicationAllowed=EAST\Branch1Users,EAST\Branch1Computers
DelegatedAdmin=EAST\Branch1Admins
SiteName=Branch1
Password=<The password for the UserName account>
ReplicaOrNewDomain=ReadOnlyReplica
DatabasePath=d:\ntds
LogPath=e:\ntds\logs
SYSVOLPath=f:\sysvol
InstallDNS=yes
ConfirmGC=yes
SafeModeAdminPassword=AD%#Rffvdr523
RebootOnCompletion=yes

Promoting a Domain Controller from Backup
Beginning in Windows Server 2003, AD administrators have the ability
to promote a DC using a backup of the AD database from an existing DC
on the network. Particularly in sites that have a low-bandwidth
connection to other DCs, this can significantly speed the process of DC
promotion by allowing much of the data to be sourced from the local
backup file, rather than requiring all data to be copied over the network.

As mentioned, you can use this IFM feature to create an additional DC in
an existing domain, either a writeable DC or an RODC.

Listing 4.3 includes an answer file that includes the ReplicationSourcePath
switch to indicate the location of the IFM backup file. Notice that this
answer file also uses the ReplicationDC switch, which lets you configure the
specific DC from which changes should be replicated; you can use the
ReplicationDC switch during any dcpromo operation, not just one that uses the
ReplicationSourcePath switch to promote a DC from an IFM backup.

Listing 4.3: Promoting a Domain Controller From Backup

dcpromo /unattend:answer.txt
[DCINSTALL]
UserName=dcadmin
Password=ADCV#$Rcfw3er4
UserDomain=east.contoso.com
DatabasePath=d:\ntds
LogPath=e:\ntds\logs
SYSVOLPath=f:\sysvol
SafeModeAdminPassword=#VTRF#vg434
CriticalReplicationOnly=no
SiteName=Philadelphia
ReplicaOrNewDomain=replica
ReplicaDomainDNSName=east.contoso.com
ReplicationSourceDC=dc1.east.contoso.com
ReplicationSourcePath=e:\backups\
RebootOnCompletion=yes

Removing a Domain Controller Gracefully
You've already seen the process of demoting DCs in the
“Decommissioning a Domain” section of Chapter 2, “Managing Domains
and Forests,” because decommissioning a domain is done by demoting
the last DC in that domain. If your aim is to decommission a single DC
without decommissioning the entire domain, you can use a much simpler
syntax for dcpromo, as shown in the following example. The most
interesting syntax here is the /DemoteFSMO switch, which lets a DC be
automatically demoted without prompting the administrator, even if that
DC holds one or more FSMO roles for the domain or forest:
dcpromo /unattend /UserName:contosoadmin /UserDomain:contoso

.com /Password:#$%CVSER$% /AdministratorPassword:%#Q@
DCed23 /AdministratorPassword:%#Q@DCed23 /DemoteFSMO:Yes /
RebootOnCompletion:Yes

Removing a Domain Controller Forcibly
The syntax in the previous section assumes that the DC you're demoting
is functioning correctly and able to communicate with the existing AD
domain. During troubleshooting or disaster recovery, for example, you
may encounter a scenario in which you need to remove AD from a DC
that isn't being nearly so cooperative. If you need to uninstall AD from a
DC that can no longer communicate with the domain, use the syntax
shown here:
dcpromo /forceremoval

After you've forcibly demoted the DC, you need to remove references
to it from the AD database—you'll also need to do this if you're removing
references to a DC that has failed without first being demoted.

Specifying the Destination Site
In order to forcibly remove a DC from an existing domain, you need to connect to
an accessible DC in the domain.

Work with the FSMO Roles
AD is a multimaster directory service, which means changes may be
made to the directory from any DC (except RODCs!) and those changes
will replicate throughout the entire AD domain or forest. Because certain
AD operations are extremely sensitive, AD specifies five operations
masters that must be fixed on the network, so that the tasks they govern
may only be performed by targeting the specific DC that holds the
relevant operations master role. However, these operations master-role
holders are also flexible, which means you can transfer ownership of one
of these FSMO roles to another DC on the network if required.

There are two forest-wide FSMOs within each AD forest, and three
domain-wide FSMO roles within each AD domain. The two forest-wide
FSMO role holders reside in the forest root domain by default and
perform the following tasks:

Schema Master FSMO: Any operation that updates the AD schema
must target the Schema Master FSMO. There is one and only one
Schema Master in every AD forest.
Domain Naming Master FSMO: In order to ensure the integrity of
the forest naming structure—that is, to prevent two child domains
from being created with the same fully qualified domain name
(FQDN)—any operation that attempts to add a new child domain,
domain tree, or application partition must target the Domain Naming
Master FSMO. There is one and only one Domain Naming Master in
every AD forest.

There are three domain-wide FSMOs within each AD domain:
PDC Emulator FSMO: Controls a number of domain-specific
critical operations, including acting as the authoritative source for
any user who has recently changed their password. If a user changes
their password on a DC other than the PDC Emulator, the new
password is sent out-of-band to the PDC Emulator so it will always
have the most up-to-date password information. That way, if the user
attempts to authenticate to a different DC that has not yet received
the new password through the normal replication schedule, the other
DC will send the authentication request to the PDC Emulator before
rejecting it entirely. The PDC Emulator also acts as the authoritative
time source for other DCs within the domain, as well as being the
default target for any changes to Group Policy Objects (GPOs.)
There is one and only one PDC Emulator in each AD domain.
RID Master: Responsible for assigning blocks of relative identifiers
(RIDs) to each DC within the domain, in blocks of 500 at a time.
Each AD object possesses a security identifier (SID) comprising the
domain SID, which is common across all users in the domain, and

the RID, which is unique for each object. Because the RID Master is
a single DC, this ensures that each RID in the domain is unique,
because only one DC will ever be handing out RIDs at a time.
Infrastructure Master (IM): Responsible for updating object
references (a user in DomainA is a member of a group in DomainB)
in a multidomain environment for DCs that aren't GC servers. If
you're operating in a single-domain environment, or if all DCs
within a single domain are also GC servers, the IM doesn't actually
have any work to do. In any other case, it's important that the IM not
be placed on a DC that has been configured as a GC server, because
this will interfere with the IM's ability to perform its function.

When you're installing the first AD domain in the forest, all five
FSMOs reside on the first DC you install, as shown in Figure 4.4.

Figure 4.4 Default FSMO role placement, single-domain forest

In a multidomain forest, the first DC installed in the forest root domain
hosts all five FSMOs by default: the two forest-wide FSMOs, and the
three domain-wide FSMOs for the forest root domain. When you install
new domains in the forest, the first DC installed in each new domain
hosts the three domain-wide FSMOs for that domain; the two forest-wide
FSMOs remain where they are. You can see an example of this in Figure
4.5.

Figure 4.5 Default FSMO placement, forest root plus child domain

Listing the FSMO Role Holders
When you're performing AD monitoring, reporting, or auditing, or for a
myriad of other reasons, you'll often need to enumerate the FSMO role
holders within a forest or a domain. The first two examples in this section
include the Get-ADForest and Get-ADDomain PowerShell cmdlets, which you can
use to easily retrieve this information from the user's currently logged-on
domain.

Because the PDC Emulator FSMO role holder registers a specific SRV
record in DNS, you can also retrieve the identity of the PDC Emulator
role holder by querying DNS. In Windows Server 2008 R2 PowerShell,
you can achieve this by using the Get-ADDomainController cmdlet, as shown in
the third example:
Get-ADForest Fabrikam.com | FT SchemaMaster,DomainNamingMaster
Get-ADDomain Fabrikam.com | FT PDCEmulator,RIDMaster,
 InfrastructureMaster
Get-ADDomainController -Discover -Service PrimaryDC

Transferring FSMO Roles
When you're managing AD over time, you may need to transfer a FSMO
role from one DC to another. PowerShell allows you to do this easily
using the Move-ADDirectoryServerOperationsMasterRole PowerShell cmdlet.
Transferring a FSMO role from one DC to another assumes that both the
source and the target DC are online and functioning correctly; if you need
to forcibly move a FSMO role from a failed DC to a new one, use the
steps described in the next section.

Figure 4.6 shows how a multidomain forest might be configured after
specific FSMO role holders have been transferred from their default
locations to other DCs in each domain.

Figure 4.6 Customizing FSMO role placement

When you're planning for FSMO role-holder placement, keep the
following best practices in mind:

Place the Schema Master and the Domain Naming Master on the
same DC.
Place the PDC Emulator on a highly available DC that has been
configured with the processor and memory capacity needed to
respond to the additional requests that this DC will receive.
Place the PDC Emulator and the RID Master on the same DC.

Additionally, the Infrastructure Master FSMO requires special handling
in any domain that meets the following criteria:

You've configured a multidomain forest, and…
You have a domain within the forest in which at least one DC hasn't
been configured as a GC server.

In this scenario, you must place the Infrastructure Master on a DC that
i s not configured as a GC server. You can see an example of this in
Figure 4.7; both the contoso.com and east.contoso.com domains have been
configured correctly to allow the GC server and the Infrastructure Master
to interact correctly.

Figure 4.7 Correct GC/infrastructure master interaction

Compare this with the example in Figure 4.8; the east.contoso.com domain
has been configured incorrectly for Infrastructure Master FSMO
placement.

Figure 4.8 Incorrect GC/infrastructure master interaction

If, on the other hand, an AD domain meets any of the following criteria,
then the Infrastructure Master may be placed without worrying about any
adverse interactions with the GC:

The domain is the only domain in the forest, or
The domain only contains a single DC, or
Each DC in this domain has been configured as a GC server.

You can see this illustrated in Figure 4.9: In this case, the east.contoso.com
domain has the Infrastructure Master configured as a GC server, but
because all three DCs in the domain are GCs, this interaction doesn't
matter. (This does, however, require that any additional DCs added to the
domain also be configured as GC servers, or the Infrastructure Master
FSMO will need to be moved.)

Figure 4.9 All DCs in the child domain are GCs.

Similar to other cmdlets we have already covered in this book, the -
Identity switch can specify the target DC using a number of formats. For
this cmdlet, you may specify any of the following as the value of the -
Identity argument:

Name of the server object (name)
Distinguished name (DN) of the NTDS Settings object
Distinguished Name (DN) of the server object that represents the
directory server
GUID (objectGUID) of the server object under the configuration
partition
GUID (objectGUID) of the NTDS Settings object under the
configuration partition

The Infrastructure Master and the Active
Directory Recycle Bin

In addition to the three scenarios listed previously, placement of the Infrastructure
Master FSMO is a non-issue in any forest where you've enabled the Active Directory
Recycle Bin feature. The Recycle Bin requires your forest to be at the Windows
Server 2008 Forest Functional level.

You'll use the same PowerShell cmdlet regardless of which FSMO role
you wish to transfer. The –OperationMasterRole cmdlet takes one of the
following arguments:

PDCEmulator

RIDMaster

InfrastructureMaster

SchemaMaster

DomainNamingMaster

The following example demonstrates the syntax to transfer the PDC
Emulator FSMO to a DC named CONTOSO-DC1:
Move-ADDirectoryServerOperationMasterRole -Identity CONTOSO-DC1

-OperationMasterRole PDCEmulator

Seizing FSMO Roles
If the DC that holds a FSMO role fails, you can forcibly seize that role to
another DC within the domain or within the forest. The decision to seize a
FSMO role should be based on which role has failed and whether you
believe the original role-holder may eventually be returned to the
network. In the case of the PDC Emulator, for example, an outage of this
FSMO role would be noticed by clients and users in relatively short
order; therefore, you might be inclined to seize the PDC Emulator FSMO
to another DC quickly. By contrast, the Schema Master FSMO only needs
to be contacted when the AD schema is being updated, an operation that
doesn't occur often in most environments. If the DC holding the Schema
Master role fails, but you expect it to be brought back online within a
reasonable amount of time (for example, if you're waiting for a
replacement part from the hardware vendor), you can feel more
comfortable leaving the Schema Master FSMO in place on the failed DC
until it's returned to service.

Seizing FSMO Role Holders
Because of the sensitive nature of the operations that each FSMO performs, you
need to take care if you must seize a FSMO role holder to a new DC before
returning the original role holder to the network. In the case of the RID Master and
Schema Master FSMO role holders, Microsoft recommends that you reformat and
reinstall the operating system of the original role holder before returning the server
to the network, if you find it necessary to seize either of these FSMOs to another
DC.
Seizing the PDC Emulator, by contrast, is a low-friction operation that shouldn't
pose significant risk to your environment if you need to seize this role to another
DC. You can return the original role holder to the network without worry.

The following example shows you the PowerShell syntax used to seize
a FSMO role. It's nearly identical to the syntax used to gracefully transfer

a FSMO role from one DC to another, with the addition of the –Force
switch:
Move-ADDirectoryServerOperationMasterRole -Identity FABRIKAM-DC1
-OperationMasterRole SchemaMaster -Force

Manage the Global Catalog Settings
For replication purposes, the AD database is divided into multiple naming
contexts (NC). Each DC will replicate a minimum of three separate
naming contexts:

Schema NC: Contains all information within the AD schema. A copy
of the Schema NC is held by every DC in the AD forest.
Configuration NC: Contains AD configuration information such as
AD site and subnet information. A copy of the Configuration NC is
held by every DC in the forest.
Domain NC: Contains a writeable copy of all information within a
single domain, including all user, group, and computer objects;
organizational units; and so on. Each DC within a domain replicates
a copy of that domain's Domain NC.

To allow easier searches for information contained in other domains,
AD also maintains the notion of the GC server. The GC naming context
contains a partial attribute set (PAS) for each object in a domain and is a
read-only copy of the data. A DC that is designated as a GC will hold a
copy of the three default naming contexts, as well as the GC NC for every
other domain in the forest. (A GC doesn't need to maintain a GC partition
for its own domain, because it already houses its own domain NC.)

In a multidomain forest, you should plan for additional disk space
requirements for all DCs that you designate as GC servers. Each GC
requires the disk space normally associated with a DC, plus 50 percent of
the size of each remote domain's database file (a good estimate for the
size of each remote domain's PAS).

Installing the Global Catalog on a Domain

Controller
You have the option to configure a DC as a GC server either during the
promotion process or after the DC is up and running. In a multidomain
environment, promoting a DC as a GC server will take additional time as
the read-only GC partitions are copied to the new DCs. Similarly, if you
add the GC server role to an existing DC, the DC won't advertise itself to
client computers as a GC until the necessary read-only partitions have
finished replicating to the new GC.

The following example shows how to promote a new DC as a GC using
the /ConfirmGC switch within dcpromo:
dcpromo /unattend /replicaOrNewDomain:replica /InstallDns:yes /
databasePath:“d:\ntds” /logPath:“e:\ntdslogs” /sysvolpath:“f:\
sysvol” /safeModeAdminPassword:DS%sdr5!@V8d3 /ConfirmGC:yes /
rebootOnCompletion:yes

The next example in this section demonstrates how to add the GC
server role to an existing DC by using the Set-ADObject cmdlet. This cmdlet
modifies the options attribute of the DC's NTDS Settings object using the
bitwise AND or OR operations. ORing a value of 1 adds the GC role;
ANDing a value of 0 removes that role. This cmdlet takes the place of
selecting or deselecting the Global Catalog check box in the AD Sites &
Services MMC shown in Figure 4.10.

Figure 4.10 Enabling the GC server

(For purposes of error-handling, the example includes a command to
check for a value of <not set> when you obtain the current value of the
options attribute, because AD won't store a value of 0. In this case, if
options is <not set>, you replace it with a value of 0 so the rest of the script
can function appropriately.)
$obj = Get-ADObject “CN=NTDS Settings,CN=Contoso-
DC1,CN=Servers,CN=Default-First-Site-Name,CN=Sites,CN=
Configuration,DC=Contoso,DC=COM”
$currentVal = $obj.options
if (! $currentVal) { $currentVal = 0}
$valToOR = 1
$newVal = $currentVal –bor $valToOR
Set-ADObject “CN=NTDS Settings,CN=Contoso-DC1,CN=Servers,
CN=Default-First-Site-Name,CN=Sites,CN=Configuration,DC=Contoso,
DC=COM” –Replace @{options=‘$newVal’}

Managing Bitwise Attributes

Certain attributes in AD are bitwise attributes, which means they store
their information using a specific encoding. A bitwise operator contains a
number of digits, each of which may be set to 0 or 1 in binary. Remember
that each binary digit represents a power of 2, where 20 = 1, 21 = 2, 22 = 4,
23 = 8, and so on. Each bit in a binary number may be set to 0 or 1; a
value of 0 indicates that this bit is not set, whereas a value of 1 indicates
that this bit is set. Take Bit 0 as an example, which is the 20 or ones place
in a binary number. Bit 0 may be set to one of the following values:

Bit 0 not set: (20) × 0 = 0 × 1, for a value of 0
Bit 0 set: (20) × 1 = 1 × 1, for a value of 1

The next digit in a binary number, Bit 1, represents the 21 or twos place
in a binary number. Similar to Bit 0, Bit 1 may be set to one of the
following values:

Bit 1 not set: (21) × 0 = 2 × 0, for a value of 0
Bit 1 set: (21) × 1 = 2 × 1, for a value of 2

Each bit in a binary number is evaluated individually and then added to
each other bit in the number. So, the binary number 10 is evaluated as
follows:

Bit 0 is not set, for a value of 0.
Bit 1 is set, for a value of 2.
Combining these bits gives a total value of 2.

Similarly, the binary number 1101 is evaluated as follows:
Bit 0 (the rightmost digit) is set, or (20) × 1, for a value of 1.
Bit 1 (the second digit from the right) is not set, or (21) × 0, for a
value of 0.
Bit 2 (the third digit from the right) is set, or (22) × 1, for a value of
4.
Bit 3 (the left-most digit) is set, or (23) × 1, for a value of 8.
The total value of this number is 8 + 4 + 0 + 1, or 13.

Bit 0 of the options attribute on the DC's NTDS Settings object indicates
whether the DC in question is advertising as a GC server. If Bit 0 is set, 1

is added to any other bits that have been set. If Bit 0 isn't set, 0 is added
to any other bits that have been set.

In the case of a DC that is configured as a GC server only, the value of
the options attribute is 1. If, however, that DC were configured as a GC as
well as having Universal Group Caching enabled, the value of the options
attribute would be 33, or 32 + 1. To remove the GC server option, you
would need to configure Bit 0 as not set, which in this case would set the
options attribute with a value of 32.

Because of this behavior, it's important not to blindly overwrite the
value of a bitwise attribute when making a change: If you took the
previous example and set the options attribute to 0, you would not only be
removing the GC server option, but also removing the Universal Group
Caching option, which might not be what you had intended to do.

In order to safely set a bit in a bitwise operator, you use the PowerShell
-BOR (bitwise OR) operator. It performs a binary operation that sets the
value of one or more specific bits without affecting any other bits that
have been configured. The OR operation takes two binary numbers and
evaluates each bit to determine whether that bit is set in one or both of
the numbers being evaluated. If the relevant bit is set in either of the two
numbers, the OR operation evaluates to 1. If the relevant bit is set in
neither of the numbers, the OR operation evaluates to 0.

For example, if you take a value of 16 (binary: 10000) and then OR the
value of 1 (binary: 0001), it's evaluated as follows:

Bit 0 is not set in 16. Bit 0 is set in 1. Bit 0 evaluates to 1.
Bit 1 is not set in 16. Bit 1 is not set in 1. Bit 1 evaluates to 0.
Bit 2 is not set in 16. Bit 2 is not set in 1. Bit 2 evaluates to 0.
Bit 3 is not set in 16. Bit 3 is not set in 1. Bit 3 evaluates to 0.
Bit 4 is set in 16. Bit 4 is not set in 1. Bit 4 evaluates to 1.
(24) 1 + (23) × 0 + (22) × 0 + (21) × 0 + (20) × 1 =
16 + 0 + 0 + 0 + 1 =
17

Now let's take the reverse example: you have an options attribute of 17,
and you want to clear Bit 0. The outcome you're looking for is to have the
options attribute set to 23 + 0 + 0 + 0 + 0, or 16. This requires the use of
two additional bitwise operators: AND and NOT. In order to clear Bit 0
from a particular value, you need to create a result that consists of all the
bits that are set in the current value, and not the bit that you need to clear.
You do this as follows:

1. Specify the bit value that you need to clear—1, 2, 4, and so on—
such as $a = 1.
2. Use the PowerShell –bnot operator to get ready to clear the value,
such as $bitToClear = -bnot $a.
3. Use the PowerShell –band operator to AND the current value against
the bit you need to clear, such as $newVal = $currentOptions –band

$bitToClear.
You'll see an example of the AND NOT logic in the “Managing Bitwise

Attributes” section.
Finally, this example demonstrates how to determine whether a

particular DC is currently advertising itself as a GC on the network:
Get-ADRootDSE -Server Contoso-DC1 | FT GlobalCatalogReady

Removing the Global Catalog on a Domain
Controller
If you determine for whatever reason that you don't want a particular DC
to function as a GC server, you may remove the GC role by using the Set-
ADObject cmdlet to modify the options attribute of the DC's NTDS Settings
object, similar to what you saw in the “Installing the Global Catalog on a
Domain Controller” section. In the case of removing the GC server role,
you change the value of Bit 0 of the options attribute from 1 (indicating
that the DC is currently a GC) to 0 (indicating that it isn't a GC). Notice
again that the example includes some error-handling to set the value of
options to 0 if it's currently <not set> in the directory.

You can see this demonstrated as follows:
$obj = Get-ADObject “CN=NTDS Settings,CN=Contoso-
DC1,CN=Servers,CN=Default-First-Site-Name,CN=Sites,CN=
Configuration,DC=Contoso,DC=COM”
$currentVal = $obj.options
if (! $currentVal) { $currentVal = 0}
$bitToClear = -bnot 1
$newVal = $currentVal –band $bitToClear
Set-ADObject “CN=NTDS Settings,CN=Contoso-
DC1,CN=Servers,CN=Default-First-Site-Name,CN=Sites,CN=
Configuration,DC=Contoso,DC=COM” –Replace @{options=‘$newVal’}

Obtaining a List of Global Catalogs
In the following example, you first see the PowerShell syntax used to
obtain the list of GC servers throughout an AD forest. The second
command restricts the results returned to those GCs within a single AD
site, Default-First-Site-Name in this case:
Get-ADForest Fabrikam.com | Format-List GlobalCatalogs
Get-ADDomainController -Filter {Site -eq ‘Default-First-Site-
Name’} | Format-Table Name,IsGlobalCatalog

Manage Server-Specific Settings
In this section, we'll look at how to customize the configuration of
individual DCs in an AD domain. This begins with the steps needed to
rename a DC, as well as stopping and restarting the AD service. You'll
also learn how to turn AD replication on and off for a particular DC, as
well as how to force an individual DC to replicate one or more AD
partitions.

We'll close the chapter with various tasks needed to manage the
physical files and folders on each DC that make up the AD database and
log files. As you administer DCs over time, you may need to perform
various maintenance tasks on these files, including performing
defragmentation operations and moving the files from one location on
disk to another.

Manage Domain Controller Settings
In this section, we'll discuss configuring some additional settings on AD
DCs, including modifying the name of the DC, determining which site it's
in, and enabling or disabling replication on the DC.

Changing the Name of a Domain Controller
Because DCs need to be accessible by name to client computers within
the domain, you must take special precautions when renaming a DC.
These are above and beyond the simple steps you might follow to rename
an end user's client computer, including updating the necessary DNS
records and service principal names (SPNs). By using the netdom.exe
commands shown in the next example, you can ensure that the DC is
renamed in a graceful manner that doesn't create outages for clients on
your network. Unsurprisingly, you'll need Domain Admin privileges to
rename a DC within an AD domain. This example renames the
DC1.contoso.com DC to a new name of branchdc.contoso.com:
NETDOM computername dc1.contoso.com /add:branchdc.contoso.com
NETDOM computername dc1.contoso.com /makeprimary:branchdc
.contoso.com
NETDOM computername branchdc.contoso.com /remove:dc1.contoso.com

Renaming A Domain Controller Using
NETDOM

Prior to running NETDOM with the /makeprimary switch, you need to ensure that the new
DNS name and SPNs have replicated throughout your forest. Otherwise, your clients
may experience issues in accessing the DC.
After you've issued the /makeprimary command, you'll need to restart the DC.

Determining What Site a Domain Controller Is In
As part of troubleshooting an AD connectivity issue or inventorying an
existing environment, you may need a quick way to determine which AD

site a particular DC resides in. This can be accomplished easily by using
t h e Get-ADDomainController cmdlet; the output of this cmdlet returns a
property called Site that contains the DC's site membership as its value.
As you've seen in previous sections and chapters, the –Identity switch of
Get-ADDomainController can take a number of arguments, including the short
name, FQDN, DN, and GUID of the DC.

In the following example, you can see this cmdlet in action, using the
Format-Table cmdlet to output the DC's name and site into an easily readable
format:
Get-ADDomainController -Identity CONTOSO-DC1.contoso.com |
Format-Table Name,Site

Restarting AD Without Rebooting the Server
Beginning with Windows Server 2008, the AD service can be stopped and
started without rebooting the server. (The Active Directory Domain
Services service now even appears in the Services MMC, as you can see
in Figure 4.11.) This allows you to stop the AD service and take the AD
database offline in order to perform a task such as applying updates or
performing an offline defragmentation of the AD database without taking
the extra time to reboot the DC into Directory Services Restore mode.
While the AD is in a stopped state, no new client requests are processed;
however, other services running on the server that don't rely on the AD
service being started, such as DHCP, continue to function and service
client requests normally.

Figure 4.11 Managing the AD service in the Services MMC

You can start, stop, and restart the AD service on a Windows Server
2008 or 2008 R2 DC using the same Start-Service, Stop-Service, and Restart-
Service cmdlets that you'd use for any other service running on a Windows
server. The following example shows the syntax for all three of these
options:
Stop-Service “Active Directory Domain Services”
Start-Service “Active Directory Domain Services”
Restart-Service “Active Directory Domain Services”

The next example shows how to obtain the current status of the
restartable AD service. By default, this cmdlet returns a table containing
the status, name, and display name of the service as it appears in the
Services MMC:
Get-Service “Active Directory Domain Services”

Forcing a Domain Controller to Replicate
At various points during troubleshooting—or if you've created one or
more objects on a particular DC and need to quickly make the rest of the
environment aware of them—you may need to force a DC to replicate

with a specific replication partner or with all of its replication partners
for one or more AD partitions.

You force replication using the repadmin.exe tool, specifying the DC that
is requesting the changes as well as (if replicating from a specific
partner) the DC from which changes are being requested. Remember that
all AD replication is pull-based, which means DC2 requests change from
DC1 before DC1 sends any changes over the network. In this simple
example, DC2 is considered the destination DC, and DC1 is considered
the source DC.

The following example shows how to force DC2.contoso.com to request all
replication changes from DC1.contoso.com for the dc=contoso,dc=com naming
context. Notice that you specify the name of the destination DC,
dc2.contoso.com, whereas you specify the GUID of the source DC, DC1:
repadmin /sync dc=contoso,dc=com dc2.contoso.com 8e90169a-dbf4-
461b-97f5-1535085b9c04 /force

Next, you can use a slightly different syntax to force dc2.contoso.com to
request replication from all of its replication partners for the Configuration
naming context:
repadmin /syncall dc2.contoso.com dc=configuration,dc=contoso,
dc=com /force

Using Repadmin /Syncall
If you omit the name of the partition in the previous example, repadmin will request all
replication changes for the Configuration and Schema partitions only.

Preventing a Domain Controller from Replicating
In addition to numerous other features, the repadmin.exe tool has the ability
to stop inbound and/or outbound replication entirely for a particular DC.
When replication is disabled using this method, normal AD replication
doesn't occur, and repadmin commands using the /replicate, /sync, and /syncall
commands fail. However, you should exercise caution in disabling

replication without also taking additional steps such as removing network
connectivity, because an administrator can override the steps described
here by using the /force switch in repadmin, or by using other replication
commands that may not honor the repadmin used to disable inbound and
outbound replication. The following example shows how to enable and
disable outbound as well as inbound replication:
repadmin /options +DISABLE_OUTBOUND_REPL
repadmin /options –DISABLE_OUTBOUND_REPL
repadmin /options +DISABLE_INBOUND_REPL
repadmin /options –DISABLE_INBOUND_REPL

Manage the Active Directory Database
The AD database is based on the Extensible Storage Engine (ESE)
format, similar to the database used by Microsoft Exchange. Like any
database, the AD ESE database consists of a number of different tables
with a row for each value in each table. When an object is deleted from
AD, one or more rows are deleted from multiple tables in the underlying
database. Each DC runs an internal defragmentation process every 12
hours by default to optimize the internal structure of the database; or you
can manually compact the database to reclaim free space. You can also
move the database, log files, or SYSVOL directory from one disk drive to
another if a particular DC is low on disk space.

Viewing the Amount of Whitespace in the Directory
Database
Because AD information is stored in a database format, deleting objects
creates whitespace in the database that may need to be optimized over
time. By default, each DC performs an online defragmentation of the AD
database every 12 hours. However, this process doesn't reduce the size of
the database file; rather, the online defragmentation optimizes data
storage in the database and reclaims space in the directory for new
objects. To view the amount of whitespace in the AD database, you can

turn on additional levels of diagnostics that cause an event to be written
to the Event Viewer recording this information. The following example
demonstrates how to modify the Registry of an AD DC to enable the
necessary logging level to capture this information:
Set-ItemProperty -Path hklm:\SYSTEM\CurrentControlSet\Services\
NTDS\Diagnostics –Name “Garbage Collection” –value 1 –type Decimal

When the necessary Garbage Collection logging level has been
configured, Event ID 1646 is logged to the Directory Services Event
Viewer, indicating the amount of disk space that may be reclaimed by
running an offline defragmentation of the AD database. The following
example shows how to use PowerShell to retrieve the contents of the
specific Event ID from the Directory Services Event Viewer:
Get-EventLog –LogName “Directory Services” | where { $_.eventID
–eq 1646}

Performing an Offline Database Defragmentation
The online defragmentation that is performed every 12 hours by default
doesn't reduce the overall size of the AD database file. By performing an
offline defragmentation of the database, you create a new, compacted
version of the ntds.dit file. If your AD database is significantly
fragmented, the new compacted file may end up being considerably
smaller than it was before the defragmentation. You should consider
performing an offline defragmentation if you need to delete a significant
number of records from your AD database, such as after you've migrated
a large portion of your AD users to a remote AD forest as part of a
company merger or divestiture.

Offline defragmentations are performed using the ntdsutil.exe utility and
may be performed in Directory Services Restore Mode or by stopping the
AD service. As part of this process, you need to have a separate location
on disk that can temporarily store the compacted AD database until the
defragmentation is complete. As a precaution, Microsoft recommends
that you make a full backup of your AD prior to performing these steps.

The following example lists the sequence of ntdsutil commands you
enter to perform this task. Here you use d:\temp as the location to
temporarily store the AD database during the defragmentation:
ntdsutil
files
info
compact to d:\temp
quit
quit

Using the Info Command
The info command displays the current information about the location and size of
the AD database and log files before continuing.

When the defragmentation has completed, delete all log files in the AD
log file directory, and then copy the compacted DIT file (in d:\temp, in this
example) back to the original database location, overwriting the original
file.

Moving the Active Directory Database
As you manage your DCs over time, you may need to move the AD
database or log files to another drive letter. It may be the case that your
database file has grown and needs to be moved to a larger drive, or you
may wish to move the database and the log files to separate hard drives in
order to improve disk performance. This process is similar to performing
an offline defragmentation; and just like that process, Microsoft
recommends that you perform a backup of your AD prior to moving any
files. This task must be performed either in Directory Services Restore
Mode or with the Active Directory Domain Services service stopped. As
a part of moving the AD database to a new location, ntdsutil also performs
an offline defragmentation of the database.

You move the AD database using the ntdsutil.exe command-line tool.
The following example lists the ntdsutil commands used to perform this

task. This example moves the AD database to d:\ntds and the AD log files
to e:\ntds\logs:
ntdsutil
files
move db to d:\ntds
move logs to e:\ntds\logs
quit
quit

After you've moved these files, you need to restart the DC or restart the
AD service. As a final step, you should make a new backup of the DC
with the files in their new location.

Moving SYSVOL to Another Location
In addition to moving the AD database and log files to alternate locations,
you may also need to move the SYSVOL shared directory to a new location,
particularly if the drive containing SYSVOL is running low on space.

Especially for environments that are using the File Replication System
(FRS) for SYSVOL replication, the safest and most efficient way to relocate
SYSVOL on a DC is to demote the DC and then re-promote the DC,
specifying the new SYSVOL location. The “Removing a Domain Controller
Gracefully” section demonstrates the syntax needed to demote a DC. The
“Install Active Directory on the Domain Controller” section demonstrates
how to promote the DC in order to specify the new SYSVOL location.
Particularly if your AD database is large in size, you can shorten the time
required to re-promote the DC by using the IFM option demonstrated in
Listing 4.3.

Moving SYSVOL Manually
If this is the only DC in your environment, you can move the SYSVOL directory
manually using the steps listed in the following Microsoft Knowledge Base article:
http://support.microsoft.com/kb/842162.

Reapplying the Default Security Permissions to

http://support.microsoft.com/kb/842162

SYSVOL
If you've manually moved the SYSVOL directory to a new location, one step
in the process is to apply a set of default permissions to the SYSVOL
directory. You may also need to reapply this default set of permissions if
they're accidentally or maliciously altered, resulting in errors in the
application of GPOs, login scripts, or access to other data that is stored in
SYSVOL.

To apply or reapply these permissions, you must first create a file
containing the text shown in Listing 4.4, and save it to
%systemroot%\security\templates\sysvol.inf.

Listing 4.4: Creating the sysvol.inf File

[Unicode]
Unicode=yes
[Version]
signature=“$CHICAGO$”
Revision=1
[Profile Description]
Description=default perms for sysvol
[File Security]
“%Sysvol%“,2,”D:P(A;CIOI;GRGX;;;AU)(A;CIOI;GRGX;;;SO)
(A;CIOI;GA;;;BA)(A;CIOI;GA;;;SY)(A;C
 IOI;GA;;;CO)”
“%Sysvol%\domain\policies“,2,”D:P(A;CIOI;GRGX;;;AU)
(A;CIOI;GRGX;;;SO)(A;CIOI;GA;;;BA)(A;C
 IOI;GA;;;SY)(A;CIOI;GA;;;CO)(A;CIOI;GRGWGXSD;;;PA)”

After you've created this file, you apply the permissions it specifies to
the SYSVOL folder using the secedit command, as shown here:
secedit /configure /cfg %systemroot%\security\templates\sysvol
.inf /db %systemroot%\security\templates\sysvol.db /overwrite

Changing the Directory Services Restore Mode
Password
When you promote a new DC, you're prompted to create a separate
administrator password to be used when you boot the server into
Directory Services Restore Mode. This password is unique to each DC

and may be used to authenticate to the DC when the AD database is
unavailable, such as when the DC is booted into Directory Services
Restore Mode.

If you forget the Restore Mode password for a particular DC, any
Domain Admin can change the password using the ntdsutil.exe utility. You
must change the password when the DC is not in Directory Services
Restore Mode; that is, you must change the restore mode password while
the AD database is online. The following example shows the commands
you enter to change the DSRM password for the DC that you're currently
logged on to. (If you want to change the Restore Mode password for a
remote DC, substitute the name of the DC for null.)
ntdsutil
set dsrm password
reset password on server null
<Enter the new password>
<Re-Enter the new password>
quit
quit

You can see what this command output looks like in Figure 4.12.

Figure 4.12 Changing the Directory Services Restore Mode password

Part II

Managing Active Directory Data
Chapter 5 Configuring Active Directory Dependencies
Chapter 6 Administering User and Group Accounts
Chapter 7 Managing Computer Accounts, Objects, and
Organizational Units
Chapter 8 Managing Group Policies

Chapter 5

Configuring Active Directory Dependencies

IN THIS CHAPTER, YOU WILL LEARN TO:
CONFIGURE DNS

Configure DNS Server Settings
Manage the DNS Server
Configure Active Directory DNS Records

MANAGE DOMAIN TIME
View Time Service Information
Configure the Time Service

When you're designing and implementing an Active Directory
infrastructure, there are some dependencies that you need to take into
account. Active Directory is dependent on multiple technical and
nontechnical factors. For example, in order for just authentication to
work when a user logs in to a domain-joined client workstation, there are
dependencies on the network configuration, name resolution, system
time, Dynamic Host Configuration Protocol (DHCP), system policies,
security policies, and a slew of other environmental dependencies. We've
covered many of these dependencies in other chapters of this book, but
we'll examine two in particular in this chapter: the Domain Name System
(DNS) and the time service.

Both of these elements are absolutely necessary in order for your
Active Directory environment to even function. Name resolution is one of
the more obvious dependencies, because without it, domain controllers
(DCs) can't be found. But the dependency of an accurate time-service
infrastructure is often overlooked. In this chapter, we'll explore how both

of these dependencies work and how you can automate their management
via PowerShell.

Configure DNS
The Domain Name System (DNS) is nothing more than a way to
represent IP addresses as friendly names that humans can remember.
However, its usage is essential to Active Directory (AD). AD uses DNS to
publish service information, locate other DCs, and locate other systems
on the network. Client computers, in turn, use DNS to find DCs to use.

The process that a client computer uses to find a DC is referred to as
the DC Locator process. This process is performed by the netlogon
service on client computers that are joined to a domain. One of the key
pieces of this discovery process involves the client performing a DNS
query to its configured domain in order to determine which DCs to talk
to. These records that the client queries for are called service locator
(SRV) records , which are used to identify servers that host services for
the network. SRV records in DNS contain the following information:

The name of the service being hosted (such as LDAP)
The protocol used to talk to the server (such as TCP)
A weight and priority setting that determines which server to use if
there is more than one registered for a particular service
The port number on which the service is hosted
The name of the server that is hosting the service

DCs use SRV records to publish service information for LDAP
connections, global catalog connections, Kerberos logons, and Kerberos
password changes. If a client computer doesn't know what site it's in, it
performs a DNS query to obtain a list of DCs for the domain. The query
is performed for the following DNS name:
_ldap._tcp.dc._msdcs.<DomainFQDN>

For example, if the client is in the domain contoso.com, the client's

netlogon service queries for
_ldap._tcp.dc._msdcs.child.contoso.com

From the list of DNS records returned, the client performs another DNS
query to resolve the DC's IP address. The client then uses this IP address
to establish a UDP connection to the LDAP service on the DC and query
for the NETLOGON attribute in RootDSE. This attribute doesn't actually exist in
the directory; rather, it's used to perform an LDAP ping. When the DC
receives a query for this attribute, it checks to ensure that the query string
contains the other elements that it expects and then returns a success
response that contains some additional information:

The DNS name of the forest (such as contoso.com)
The DNS name of the domain (such as child.contoso.com)
The DC's fully qualified host name (such as dc1.child.contoso.com)
The NetBIOS name of the domain (such as CHILD)
The DC's NetBIOS name (such as DC1)
The site that the DC is in (such as BALTIMORE)
The site that the client is in (such as SEATTLE)

Two of the key elements in the LDAP response are the site the DC is in
and the site the client is in. The DC is able to determine the client's site
by performing a directory lookup using the IP address of the client. The
DC maps this IP address to a subnet object in the directory (covered in
Chapter 3, “Managing Sites and Replication”). The DC can extrapolate
which site the subnet is associated with by reading the siteObject attribute
on the subnet object.

This information is returned to the client so the client can make a
decision as to whether it should use the DC. If the DC is in the same site
as the client, the client uses the DC. Otherwise, it tries to find a DC that is
in the same site by performing another SRV record query. This time,
however, the client knows what site it's in, so it queries for the following
record:
_ldap._tcp.<sitename>._sites.dc._msdcs.<DomainFQDN>

Using the previous example, the next query would resemble the
following:
_ldap._tcp.SEATTLE._sites.dc._msdcs.child.contoso.com

The same LDAP query process is repeated. If no DCs are found in the
same site as the client, the client uses the DC that the first LDAP query
was performed against. Because of this, it's important to ensure that your
client's subnets are registered to a site in AD. If they are not, a random
DC could be used.

Configure DNS Server Settings
In addition to using DNS for locating DCs, the DC can also double as a
DNS server. In fact, this is a fairly common configuration, because using
AD DCs for your DNS servers has some advantages. When you're
working with DNS servers via PowerShell, the best method is to use the
Windows Management Instrumentation (WMI) provider. Windows DNS
servers have the option of storing their data in AD (which we'll discuss in
depth in this chapter), but they can also store data in DNS zone files.
Therefore, you can't write PowerShell scripts with the assumption that the
DNS data exists as AD objects. Because of this, WMI gives you the most
flexibility with DNS scripts.

Understanding How DNS Works
In general, DNS servers listen for DNS requests and respond to them
appropriately. For example, a client may want to resolve the name contoso-
dc1.contoso.com to an IP address. The client performs a query by asking the
DNS server to give it the IP address for contoso-dc1.contoso.com. When the
DNS server receives the query, it looks up the information in its internal
database and then returns it to the client. The process is simple enough,
but designing what the DNS infrastructure looks like can become
complex because there are many things to take into consideration.

DNS Zones
Domain names in DNS are represented by zones. A domain that contains
multiple names stores these name-to-IP address mappings in the zone for
that domain. For example, consider the DNS domain named contoso.com.
The DNS records for www.contoso.com and mail.contoso.com both fall under the
contoso.com domain name. As such, the contoso.com zone on the DNS server
would contain both of the DNS records and the IP addresses they resolve
to.

Any given DNS server can contain multiple zones. For example, a DNS
server can host both the contoso.com zone and the fabrikam.com zone. In
traditional DNS implementations, the data for each of these zones is kept
in a zone file. The zone file is essentially the database that maps the
naming information and the IP information for each zone. To be
considered RFC compliant, zone files must adhere to the format imposed
in RFC 1035, which describes how a zone file is to be structured. Most of
the time, the files aren't edited manually. Instead, there is typically a
more user-friendly interface that administrators interact with, and the
zone file is updated by the administration application.

Recursion
DNS clients can make two types of queries:

Recursive query
Iterative query

To understand the difference between the two, consider a situation
where a client tries to browse to www.contoso.com. The network settings on
each client include the IP address of the client's DNS server. Any time a
client computer needs to resolve a DNS name to an IP address, this is the
DNS server that it goes to first. If the client doesn't already have the IP
address for www.contoso.com in its cache, it queries its DNS server and asks
for it.

The DNS server first determines if it owns the record for www.contoso.com.

http://www.contoso.com
http://www.contoso.com
http://www.contoso.com
http://www.contoso.com

If not, it begins looking for another DNS server to ask. This process starts
at the root of the DNS name (.com in this case) and performs the query
there. An Internet root DNS server for the .com name checks to see if it has
the answer; if not, it issues a referral for the requesting DNS server and
gives it another server to check with. In this case, it's referred to the
server that owns the contoso.com domain. The requesting DNS server then
sends the query to the server it was referred to. This same process is
followed again for the contoso.com DNS server. This time, however, the
server does own the record for www.contoso.com, so it resolves the query and
sends the answer back to the requesting DNS server. That DNS server
then sends the answer back to the client that requested it. This process
that we just described is called a recursive query and is demonstrated in
Figure 5.1.

Figure 5.1 How a recursive query works

http://www.contoso.com

When the client requested the IP address for www.contoso.com from its
configured DNS server, it told the server that the query is recursive. This
means it's up to the DNS server to find the IP address and give it back to
the client. If the DNS server can't find it, then the client believes the
address doesn't exist and doesn't bother querying other servers. After the
client requested the recursive query, the DNS server went through the
process of finding the IP address, looking in one server after another. In
this example, we illustrated recursion by having the client's DNS server
query only two servers. However, in reality it could take more or even
less. For example, if the DNS server for the .com domain already had the
address for www.contoso.com in its cache, it would have returned the answer
back to the client's DNS server rather than returning a referral.

If the client performed an iterative query, the client's DNS server
wouldn't go out and look for the IP address. Instead, it would examine its
own database or cache and return the best information it had. For
example, if it knew the IP of www.contoso.com, it would return it; but if not, it
might return a referral to the client to the contoso.com DNS server. It would
then be the client's responsibility to go out and query the DNS server that
it was referred to. This is the process that was followed in our illustration
when the client's DNS server queried the .com DNS server for the IP
address of www.contoso.com. The client's DNS server issued an iterative
query; it wasn't expecting the .com server to go out and find the name for
it. Instead, the client's DNS server would follow the referral chain and
find the address on its own.

Forwarders
A DNS server can also be configured to forward queries to a separate
DNS server. This may be useful if you have all your clients pointing to an
internal DNS server and want a separate DNS server to resolve queries
over the Internet. When the client queries the configured DNS server, the
DNS server checks its local zone information and cache. If it doesn't
know the answer to the client's query, it forwards the query to the DNS

http://www.contoso.com
http://www.contoso.com
http://www.contoso.com
http://www.contoso.com

server that is configured as its forwarder. This causes the client's DNS
server to behave differently than we previously described. Typically, the
client's DNS server uses recursion to find the IP address and return it to
the client. However, when forwarders are used, the client's DNS server
sends the query to the forwarders (one at a time) and waits for a response.
When the client's DNS server gets the IP address from the forwarder, it
sends the IP address back to the client. If the forwarders don't respond,
the client's DNS server falls back to using recursive queries, although the
fallback to recursion can be disabled.

In Windows Server 2003, Microsoft introduced a new type of forwarder
called a conditional forwarder. With regular forwarders, every DNS
query to which the server doesn't know the answer is forwarded to the
forwarder. With conditional forwarders, the server forwards the query
only for the domain specified. For example, if you set up a conditional
forwarder for the domain contoso.com, then the DNS server would use
recursion to answer DNS queries for other domain names. But when a
DNS query comes in for a contoso.com domain name, the DNS server would
forward the query to the server specified as the conditional forwarder.
This comes in handy in a couple different cases:

Unpublished Domain Names If you need to resolve queries to
another domain name that is unpublished (has an irregular name),
such as root.admin, you can use a conditional forwarder can. I (Ken)
have personally had cases in the past when I had to put a forest-level
trust in place between two forests with unpublished names. The DNS
domain name root.admin isn't an official DNS name hosted by the root
DNS servers on the Internet, so recursion can't be used to resolve the
names in this case. Instead, you can set up a conditional forwarder so
that any query to root.admin gets sent to the IP address of the server that
hosts that zone.
Lab Scenarios Another case where I frequently use conditional
forwarders is when I'm working in my lab. This is especially the case
when I'm working with two separate forests, such as contoso.com and

fabrikam.com. I'll configure each forest with a conditional forwarder to
the other forest so DNS queries can be resolved properly.

High Availability
Client computers are configured to talk to a specific DNS server by IP
address. This is typically configured either through DHCP or manually.
When using DHCP, the client receives its network configuration
automatically from the DHCP server, and part of this configuration is one
or more DNS servers that it needs to talk to. When configuring the DNS
servers on a client computer manually, you type in the IP address of the
server the client should use. In most cases, manual configuration isn't
preferable. Not only can it be cumbersome and error prone, but if your
DNS server's IP address changes, you have to go back and reconfigure all
those manual clients. Scripting this change can make this task much
easier for you, so later in this section we'll give you a script for changing
the DNS configuration on multiple client computers on your network. In
most cases, however, DHCP is used because no one wants to manually
configure the network settings on more than just a few computers. The
exception is on your server workloads. Most organizations tend to
configure the network settings on servers manually.

Because clients point to the DNS server's IP address directly, if the
DNS server goes offline, the client can't use DNS. As we discussed earlier
in this chapter, DNS is critical when clients use AD, because it's how they
find DCs. Therefore, if a client can't reach the DNS server, the user can't
log in to the domain. Because of this, there are usually multiple DNS
servers in the environment. Client computers are configured to use more
than one DNS server, although one is configured as primary and the
others as secondary, tertiary, and so on. If the client can't contact the
primary DNS server by its IP address, it walks down the list of alternate
DNS servers.

For this to work, each DNS server needs to retain a copy of the DNS
data. In traditional DNS implementations, a single master architecture is

used to accomplish this. This means one DNS server is designated as the
primary holder of the DNS information for a zone. Updates can only
occur on the primary server. The other DNS servers are consider
secondary holders of the DNS information, and they have read-only
copies of the zone. DNS data is copied from a primary server to a
secondary server or from one secondary server to another secondary
server. This direct exchange of DNS data between two DNS servers is
called a zone transfer. In a zone transfer, the server that is sending the
data is referred to as the master, and the server receiving the data is
referred to as the slave. In the past, masters were required to send the
entire zone to slaves when any data in the zone changed, even if only one
record changed. Now, however, we have incremental zone transfers.
These allow the master to send only the DNS data that has changed since
the last transfer. Figure 5.2 illustrates the concept of zone transfers.

Figure 5.2 Zone-transfer concepts

When you encounter DNS architectures that were built on a single
master DNS technology, you'll usually find that the design of the DNS
architecture was built around this limitation. We've seen designs in the
past where organizations broke DNS architectures into dozens of zones in
order to have primary zone servers local to different sites. Architectures

like this tend to cause problems when clients are joined to AD domains,
because the DNS host names of the client computers may be different
than the DNS name of the domain. You can work around these issues, but
not without some administrative pain.

Creating a DNS Zone
Microsoft DNS servers can host multiple zones. In fact, after a default
installation of AD, you'll find that there are two zones created that
represent the forest or domain. To create a new DNS zone, you can use
the CreateZone method in WMI. You need to specify a couple of settings
when doing so. Here is what the method looks like:
CreateZone(ZoneName, ZoneType, IsADIntegrated, ZoneFileName,
 PrimaryIPAddress, AdminEmail)

ZoneName The name of the zone; for example, corp.contoso.com.
ZoneType The type of zone that you're creating (0 = primary, 1 =
secondary, 2 = stub zone, 3 = forwarder).
IsADIntegrated Whether the zone is AD-integrated. This value is
$true or $false.
ZoneFileName If you choose to not use an AD-integrated zone, you
can optionally specify the zone file that is used. If this is omitted, the
name of the zone file is the DNS name of the zone followed by .dns.
For example, the zone file for the corp.contoso.com zone is
corp.contoso.com.dns.
PrimaryIPAddress When you're creating a secondary zone, this
parameter provides the IP address for the primary zone holder. The
zone is transferred to the secondary from this server.
AdminEmail The email address of the zone's administrator. This
parameter is optional.

You'll find the CreateZone WMI method in the MicrosoftDNS_Zone class in
WMI. The easiest way to invoke this method is to use the WMICLASS type
accelerator. The WMICLASS type accelerator is an alias to the

System.Management.ManagementClass object type. When you use this type
accelerator, you pass it the path to the WMI class that you want to use,
and then you can call the methods directly. The following example
creates a System.Management.ManagementClass object in PowerShell that points to
the MicrosoftDNS_Zone class, which is where the CreateZone method is kept. This
object is being stored in the variable named $objWMIClass:
$objWMIClass = [WMICLASS]“root\MicrosoftDNS:MicrosoftDNS_Zone”

From here, you can call the CreateZone method straight from the
$objWMIClass object. This example creates an AD-integrated zone called
corp.contoso.com. Because all AD-integrated zones are considered primary
zones (because they can all write DNS data), you can mark the zone type
as primary:
$objWMIClass.CreateZone(“corp.contoso.com”, 0, $true)

To create the same zone as a standard primary zone that isn't AD-
integrated, you can use the following command:
$objWMIClass.CreateZone(“corp.contoso.com”, 0, $false)

By default, when you create an AD-integrated zone using the CreateZone
method, it's stored in the domain naming context and replicated to all
DCs in the same domain as the DNS server. You can (and probably
should) modify the replication scope after the zone is created. We'll show
you how to do this later on in this chapter.

Creating a Reverse Lookup Zone
In DNS, a standard zone is also known as a forward lookup zone. A
forward lookup zone is used to resolve a DNS name to an IP address.
There is also the concept of a reverse lookup zone. A reverse lookup zone
has the opposite effect; it resolves an IP address to a DNS name. Reverse
lookup zones operate similarly to forward lookup zones. Rather than
using host records, a reverse lookup zone uses pointer (PTR) records. The
PTR record stores the IP address and the host name and provides the
reverse lookup information to DNS clients.

To create a reverse lookup zone, you can use the same method as
creating a forward lookup zone. The difference, however, is in what you
name the zone. Reverse lookup zones require a specific name. The first
part of the DNS name of a reverse lookup zone is the masked part of the
subnet's IP address in reverse order. So if the subnet is 192.168.0.0 with a
subnet mask of 255.255.255.0, then you specify 0.168.192 as the first part
of the zone name. The second part of the name for a reverse lookup zone
is always in-addr.arpa. The complete name of the reverse lookup zone for
the 192.168.0.0/24 subnet is 0.168.192.in-addr.arpa.

To create a reverse lookup zone, you should use the same CreateZone
WMI method that you use when creating a regular forward lookup zone.
The only difference in the code is the name of the zone. The following
commands create the reverse lookup zone for the 192.168.0.0/24 subnet:
$objWMIClass = [WMICLASS]“root\MicrosoftDNS:MicrosoftDNS_Zone”
$objWMIClass.CreateZone(“0.168.192.in-addr.arpa”, 0, $true)

In the previous command, the reverse lookup zone is being created as a
primary zone that is AD-integrated. Everything else about using this
method for reverse lookup zones is exactly the same as when creating
forward lookup zones. For more information about using the CreateZone
method, see the previous section, “Creating a DNS Zone.”

Determining Which Zones a DNS Server Has
It isn't required that every DNS server host the same zones. Each DNS
server in your environment can contain a different set of zones and a
unique configuration; this is entirely dependent on your DNS design. You
can use WMI to target a specific DNS server and determine which zones
that server hosts. To do this, you can connect to the MicrosoftDNS WMI
namespace on the DNS server and view all the instances of the
MicrosoftDNS_Zone class. The following PowerShell command uses the Get-
WMIObject cmdlet to connect to the local server and display a list of the
zones that it currently has:
gwmi -Namespace root\MicrosoftDNS -Class MicrosoftDNS_Zone |

 ft Name

To target a different DNS server, you can specify the ComputerName
parameter onto the Get-WMIObject cmdlet. The following example lists the
DNS zones on the DNS server named BAL-DC01:
gwmi -Namespace root\MicrosoftDNS -Class MicrosoftDNS_Zone
 -ComputerName BAL-DC01 | ft Name

Converting a Zone to AD-Integrated
As mentioned throughout this chapter, a Microsoft DNS server can host a
DNS zone as a standard zone in a zone file or as an AD-integrated zone.
When you integrate your zones with AD, a couple of things happen. First,
the data for the zone is stored in AD rather than in a zone file. Prior to
Windows Server 2003, the DNS data could only be stored in the domain
partition of AD. This meant only DNS servers inside the same domain
could host an AD-integrated DNS zone. Other DNS servers could receive
a copy of the zone, but they acted as secondary DNS servers, and their
copy was read-only. When you think about it, this makes sense, because
DCs can only write to the domain partition for the domain they're in. So a
DC in a different domain (even in the same forest) can't update DNS
objects for a different AD domain. This sometimes posed a problem in
AD architectures with multiple domains. If you wanted a local primary
DNS server for a site that had multiple domains, you had to ensure that a
DC for that domain was in the site. This changed in Windows Server
2003 with the introduction of application partitions. Application
partitions allow other applications to create a partition in AD for storing
its data. The DCs that get a replica of this partition can span any domain
in the forest. AD-integrated DNS zones can be stored in an application
partition instead of the domain partition, enabling the zone to be
replicated to any DNS server in the forest.

The second thing that happens when you make a zone AD-integrated is
that the server hosting the zone becomes a primary zone holder. This
means updates to the DNS information can be written by this server. This

happens because AD is a multimaster system, so DNS is using the
platform that already exists to update data on any of the DNS servers.

The last thing worth mentioning is that because the DNS data is stored
as objects in the directory, each record has an Access Control List (ACL)
tied to it. Therefore, you can enforce a setting called Secure Updates.
When this setting is enabled on the zone, only the computer account that
created the DNS record can update it. This enforces the domain's
permission model onto DNS and ensures that DNS records don't succumb
to traditional record-hijacking techniques. It's rare that we would
recommend turning off Secure Updates on an AD-integrated DNS zone.
In the past, we've only had to do this for compatibility issues with some
non-Microsoft technologies that absolutely require dynamic updates.

To convert a zone from a standard zone to an AD-integrated zone, you
need to modify the Type setting on the zone. You can do this by calling
the ChangeZoneType WMI method. When you do, the method converts the
zone to a primary zone and specifies that it should be AD-integrated.
Calling the method with the following syntax accomplishes this:
ChangeZoneType(0, $true)

Before you can change the zone type, however, you need to get an
object that references the zone you want to convert. To do this, you use
the Get-WMIObject cmdlet in PowerShell. In the following command, the Get-
WMIObject cmdlet (or gwmi for short) is used to get a WMI object of the class
MicrosoftDNS_Zone whose name is corp.contoso.com. The object is stored in the
$objDNSZone variable.
$objDNSZone = gwmi -Namespace “root\MicrosoftDNS” -Class
“MicrosoftDNS_Zone” -Filter “ContainerName=‘corp.contoso.com’”

From there, you can call the ChangeZoneType method, telling WMI to
convert the zone to AD-integrated:
$objDNSZone.ChangeZoneType(0, $true)

Enabling the GlobalNames DNS Zone
The GlobalNames zone was added in Windows Server 2008 as a means of

performing name resolution for single-label names. By single-label
names, we mean names that aren't fully qualified. For example, if you
had a server named printserver.contoso.com, its single-label name would be
printserver. Single-label names are usually resolved via NetBIOS methods
using one of the following three approaches:

DNS Name Suffixes When a client attempts to resolve a single-label
name, it appends the domain name to the single-label name and uses
DNS to perform the query. Clients can have name suffix lists that
contain other names to append to a single-label name in case it isn't
resolved from an earlier name.
Windows Internet Name Service (WINS) WINS is similar to DNS
but is focused solely on resolving single-label names rather than fully
qualified names. If a client has a WINS server configured in the
network settings, that client contacts the WINS server to attempt to
resolve the single-label name.
Network Broadcast When all else fails, a broadcast packet is sent
across the network segment to determine if anyone hosts the requested
single-label name. This technique offers limitations, such as
resolution across network routers.

One of the methods that we just outlined will typically work for most
people. However, there are limitations and system designs that can make
these options less appealing. For example, consider the situation where an
environment includes multiple domains or multiple forests. When using
the DNS suffix search order, you have to configure multiple DNS suffixes
to search through on each and every client. You can make this somewhat
easier by using Group Policy, but even so, the client has to enumerate that
list of suffixes, which takes time. Also consider the situation where
you're transitioning to IPv6. WINS doesn't support IPv6 and therefore
can't be used to resolve single-label names to IPv6 addresses.

How the GNZ Works

To help with single-label name resolution, Microsoft introduced the
GlobalNames zone (GNZ) in Windows Server 2008. The GNZ is basically
a typical forward lookup zone with a special name (GlobalNames) that
the DNS servers are aware of. When the GNZ is deployed in your
environment, the name-resolution process on your Windows Server 2008
DNS servers is modified. When a query is received, the single-label
portion of the name is first queried in the GNZ. If the record exists, then
the query completes and the result is returned. If the record doesn't exist
in the GNZ, then the DNS server runs through its typical name-resolution
process. Because of this modified behavior, it's important to ensure that
all the single-label names in the GNZ are unique across your forest. If
they aren't, names won't resolve correctly. As a byproduct, you're
required to update the GNZ with static records.

The single-label records in the GNZ are just CNAME records: aliases
pointing to the real fully qualified name of the server. For example, the
printserver record in the GNZ resolves to printserver.contoso.com.

Enabling the GNZ
To enable the GNZ, you must do two things:

1. Create the EnableGlobalNamesSupport Registry key, and set it to 1 in the
following Registry path:
HKLM\System\CurrentControlSet\Services\DNS\Parameters. Do this on every DNS
server.
2. Create the GNZ, and add your records to it.

Before you can do this, there are a couple of things you should keep in
mind. First, ensure that all your DNS servers are at least Windows Server
2008 servers. If not, you'll get mixed results because some clients may be
pointing to DNS servers that don't support the GNZ and thus single-label
resolution won't work as expected for those clients. Second, ensure that
you replicate the GNZ across the whole forest. And third, if you're using
multiple forests, you can configure an SRV record in the _msdcs DNS

domains of the domains in your other forests. These records point to the
servers that host the authoritative copies of the GNZ. In this case, you
need to ensure that these servers are also configured for the GNZ (using
the Registry key discussed earlier) and that the names in the GNZ are
unique across all of the forests.

You can use the PowerShell script in Listing 5.1 to enable the GNZ in
your forest. This script can't search your entire environment for DNS
servers, so you must manually edit the variables at the beginning of the
script to include all the DNS servers in your environment. The script
performs the following steps:

1. Ensure that each DNS server is running a minimum version of
Windows Server 2008.
2. Set the GlobalNames Registry key on each DNS server.
3. Create the GNZ on the DNS server that you specify. This zone is set
to an AD-integrated zone.

One other thing to mention is that this script only enables the GNZ in
one forest. If you have multiple forests, you can create the
_globalzones._mcdcs.<DomainName> SRV records in those other forests by hand.
You should create multiple SRV records, each pointing to a DNS server
that hosts a copy of the GNZ.

Listing 5.1: EnableGNZ.ps1

File Name: EnableGNZ.ps1
Description:
Enables the GlobalNames zone on the DCs
that you specify in this script.
##
Edit this list of DNS servers to identify which DNS servers
will be enabled for the GlobalNames zone.
$colDNSServers = @(“SEA-DC01”, “BAL-DC01”)
Enumerate the list of DNS servers
foreach ($DNS in $colDNSServers)
{
 ## Check to ensure that the DNS server is running Windows
 ## Server 2008 or R2
 $objOSInfo = gwmi Win32_OperatingSystem -Computer $DNS
 if ($objOSInfo.Version.StartsWith(6))
 {

 # Set the registry key that enables the GlobalNames zone
 $objReg = [WMICLASS]“\\$($DNS)\root\cimv2:StdRegProv”
 $objReg.SetDWordValue(2147483650,
 “SYSTEM\CurrentControlSet\Services\DNS\Parameters”,
 “EnableGlobalNamesSupport”, 1)
 }
}
The zone is created on the first server in the list of
servers specified in the $colDNSServers array
$objWMIClass = [WMICLASS]“\\$($colDNSServers[0])\root\” +
 “MicrosoftDNS:MicrosoftDNS_Zone”
$objWMIClass.CreateZone(“GlobalNames”, 0, $true)

Forwarding Unresolved DNS Queries to Another
Server
Earlier in this chapter, we discussed how a server resolves a DNS query
by using recursion. Rather than going through the process of recursively
looking for an answer to a client's query, a DNS server can be configured
with a forwarder, another concept that we discussed earlier in this
chapter. The forwarder then takes on the responsibility of answering the
query.

Forwarders can take two forms: either a standard forwarder, which
forwards all queries to other DNS servers, or a conditional forwarder,
which only forwards queries about a certain namespace. Standard
forwarders are configured on a server-by-server basis. Conditional
forwarders, however, can be stored in AD and replicated to multiple DNS
servers.

Setting Up a Forwarder
Forwarders are configured independently for each DNS server in your
environment. In some DNS architectures, an organization may use a
different DNS infrastructure for external name resolution. In this case, a
standard DNS configuration item on the network may be to forward
queries to a specific set of DNS servers. One of the things you can do is
script the configuration of the DNS forwarder and add it to the
installation process you use for standing up new DNS servers. The

following script (Listing 5.2) will configure the DNS forwarder settings
on the server that you specify.

Listing 5.2: ConfigDNSForwarders.ps1

File Name: ConfigDNSForwarders.ps1
Description:
Configures the DNS forwarders on the DNS server that you
specify when you run this script. If there is no DNS
server specified, the local machine is used.
##
param([string]$ServerName = “.”)
Before running this script, add your forwarders into this
array variable.
$arrForwarders = @(“192.168.0.100”,“192.168.0.110”)

Get the WMI object for the DNS server. This object contains
the DNS settings and is where we will update the forwarder
list.
$objDNSServer = gwmi -Namespace “root\MicrosoftDNS” ‘
 -Class MicrosoftDNS_Server -ComputerName $ServerName
Set and commit the forwarders to the DNS servers that we
specified in the $arrForwarders variable.
$objDNSServer.Forwarders = $arrForwarders
$output = $objDNSServer.Put()
Write-Host “Configuration complete.”

Setting Up a Conditional Forwarder
You can configure conditional forwarders on a DNS server by using the
CreateZone method that we discussed earlier in this chapter in the section
“Creating a DNS Zone.” When you execute this method, you need to pass
in the name of the DNS domain that the conditional forwarder is for and a
list of IP addresses for the servers that are the domain's forwarders.

The following command creates a conditional forwarder for the
contoso.com domain to the DNS server at 192.168.0.10:
$objWMIClass = [WMICLASS]“root\MicrosoftDNS:MicrosoftDNS_Zone”

$objWMIClass.CreateZone(“contoso.com”, 3, $true, “”,
 @(“192.168.0.10”))

Manage the DNS Server
In addition to configuring DNS, you can use PowerShell for managing

certain aspects of the DNS server itself. There are times when you'll have
to perform administrative tasks on the server, such as restarting the DNS
service, keeping an eye on its configuration, or viewing some of the
server's statistics.

Restarting the DNS Service
Sometimes you may have to restart the DNS service. Maybe you've made
a change that will need a restart to take effect, or you're having a problem
with the service itself. There are a couple of different ways to restart
services with PowerShell, such as by using the PowerShell Restart-Service
cmdlet. However, the Restart-Service cmdlet only affects services on the
local machine, so you would need to use a remote PowerShell connection
to restart services on other computers. Because of this, it makes more
sense to the use the WMI methods for restarting the DNS services. If
you're making a DNS configuration change on a remote computer using
WMI, you can call the following methods to restart the service on that
computer remotely:

StopService

StartService

You can call these methods by using the Invoke-WMIMethod cmdlet or by
using its alias, iwmi. The following command stops the DNS service on the
computer SEA-DC01:
iwmi StopService -Namespace root\MicrosoftDNS -Path
 “MicrosoftDNS_Server.Name=‘.’” -ComputerName SEA-DC01

You can also shorten the command by specifying the full path to the
class:
iwmi StopService -Path

 “root\MicrosoftDNS:MicrosoftDNS_Server.Name=‘.’”
-ComputerName SEA-DC01

Viewing the DNS Server Configuration
Having the properties and methods of a DNS server exposed through

WMI makes gathering information on the DNS server very convenient. In
fact, you can use this methodology to regularly check up on your DNS
servers and verify that the configuration is correct. To view the
configuration of a DNS server, you simply need to use WMI to connect to
that server and view the MicrosoftDNS_Server class. This WMI class contains
all the configuration items for the DNS server itself. Anything specific to
the configuration of the DNS zones, on the other hand, is found in the
MicrosoftDNS_Zone class. You can connect to the class through the server
you're examining by using the Get-WMIObject cmdlet. The following example
gets the DNS server settings for the local computer. If you want to get the
settings for a different computer remotely, use the -ComputerName parameter
and specify the DNS server's name:
gwmi -Namespace “root\MicrosoftDNS” -Class MicrosoftDNS_Server

When you run this command, you'll see several DNS settings output to
the screen. Now that this information is available to you, you can put it
into a script so you can format it, narrow it down, or perform other
operations with it. When you're creating a PowerShell script for viewing
the DNS server configuration, you may ask yourself what properties of a
DNS server are important to you. For the example script in Listing 5.3,
we chose the following properties:

The name and type of each zone that the DNS server holds a copy of
Configuration of the DNS scavenging settings
A list of configured forwarders, both standard and conditional

Unfortunately, there is no reliable method available for getting a list of
all the DNS servers in your environment. Therefore, this script won't go
out and discover DNS servers on which to view the information. Instead,
we've provided a way for you to specify your DNS servers in a variable at
the beginning of the script, and the script will enumerate each one. The
script uses WMI to read DNS configuration settings and creates an
HTML report for you.

Listing 5.3: ViewDNSConfig.ps1

File Name: ViewDNSConfig.ps1
Description:
Outputs the DNS configuration of one or more servers. You
specify the list of servers by modifying the arrDNSServers
variable near the beginning of the script.
##
Modify this variable to specify your DNS servers.
$arrDNSServers = @(“SEA-DC01”,“BAL-DC01”)
$output_file = “c:\dns_config.html”
Defines the style of the HTML output
$style = “<style>”
$style += “H1{font: bold 20px ‘Trebuchet MS’;”
$style += “ color: #000000;”
$style += “ letter-spacing: 2px;”
$style += “ text-transform: uppercase;”
$style += “ text-align: left;}”
$style += “TABLE{border-style: solid;”
$style += “ border-width: 1px;}”
$style += “TD{border-right: 1px solid #C1DAD7;”
$style += “ border-bottom: 1px solid #C1DAD7;”
$style += “ background: #fff;”
$style += “ padding: 6px 6px 6px 12px;”
$style += “ color: #6D929B;}”
$style += “TH{font: bold 11px ‘Trebuchet MS’;”
$style += “ color: #6D929B;”
$style += “ border-right: 1px solid #C1DAD7;”
$style += “ border-bottom: 1px solid #C1DAD7;”
$style += “ border-top: 1px solid #C1DAD7;”
$style += “ letter-spacing: 2px;”
$style += “ text-transform: uppercase;”
$style += “ text-align: left;”
$style += “ padding: 6px 6px 6px 12px;”
$style += “ background: #CAE8EA;}”
$style += “</style>”
Define the HTML heading and table rows
$html = “<H1>DNS Configuration</H1>”
$html += “<table cellpadding=2 cellspacing=0><tr>”
$html += “ <th>Server Name</th>”
$html += “ <th>Zones</th>”
$html += “ <th>Scavenging</th>”
$html += “ <th>Forwarders</th>”
$html += “ <th>Conditional Forwarders</th>”
$html += “</tr>”
Add the DNS Configuration details as separate rows
foreach ($DNSServer in $arrDNSServers)
{
 ## Get the DNS Server's properties
 $dns_properties = gwmi -Namespace “root\MicrosoftDNS” ‘
 -ComputerName $DNSServer -Class MicrosoftDNS_Server
 ## Get the zones and their properties
 $dns_zones = gwmi -Namespace “root\MicrosoftDNS” ‘
 -ComputerName $DNSServer -Class MicrosoftDNS_Zone
 ## Output the name of the server
 $html += “<tr><td>$($dns_properties.name)</td>”

 ## Output each zone and its type
 $html += “<td>”
 foreach ($zone in $dns_zones)
 {
 $ztype = “Primary”
 if ($zone.ZoneType -eq “2”) { $ztype = “Secondary” }
 elseif ($zone.ZoneType -eq “3”) { $ztype = “Stub” }

 if ($zone.ZoneType -ne “4”) {
 $html += $zone.name + “: “ + $ztype + “
”
 }
 }
 $html += “</td>”

 ## Output the Scavenging Interval
 $html += “<td>$($dns_properties.ScavengingInterval) Days</td>”

 ## Output the forwarders
 $html += “<td>”
 foreach ($fwd in $dns_properties.Forwarders)
 {
 $html += $fwd + “
”
 }
 $html += “</td>”

 ## Output the Conditional Forwarders
 $html += “<td>”
 foreach ($zone in $dns_zones)
 {
 if ($zone.ZoneType -eq “4”) {
 $html += $zone.name + “
”
 }
 }
 $html += „</td></tr>“
}
$html += „</table>“
Write the HTML file
ConvertTo-Html -PostContent $html -Head $style | ‘
 Out-File $output_file
Display the HTML report
Invoke-Expression $output_file

This information alone can be very valuable. However, it's even more
valuable when you combine it with the information from other parts of
AD that we show you how to script throughout this book. You might even
consider reporting this information alongside the information in the next
section in order to really get a handle on what's happening on your DNS
servers.

Gathering DNS Server Statistics

The Microsoft DNS server maintains a wide range of statistical data that
can be viewed and used for monitoring and reporting. This data includes
things like the number of queries (broken up by record type), responses,
memory usage, cache statistics, and much more. Almost 700 pieces of
statistical data are readily available, and you can view them by
enumerating the instances of the MicrosoftDNS_Statistic class. The easiest
way to do this is to use the Get-WMIObject cmdlet. The following command
dumps all this information out to a CSV file that you can use in reports or
additional scripts:
Get-WMIObject -Namespace “root\MicrosoftDNS” -Class
 “MicrosoftDNS_Statistic” | Export-CSV c:\DNSStats.csv

You can use this command in the script that we provided in the
previous section to give your administrators a good amount of
information about how DNS is configured and how it's performing. You
might even consider adding in some of the performance characteristics of
the DNS server, as we'll demonstrate in Chapter 11, “Monitoring Health
and Performance.”

Configure Active Directory DNS Records
AD uses a few different types of records in DNS. First, there are the
standard computer host records, which resolve the host name of the DC to
its IP address. An example of this is shown in Figure 5.3.

Figure 5.3 DC host records

Second, each DC uses a CNAME record in the _msdcs.<DomainName> DNS
zone to make the Globally Unique Identifier (GUID) resolvable to the
DC's host record. This record is shown in Figure 5.4.

Figure 5.4 DC CNAME records

And finally, a series of SRV locator records are used throughout the
_msdcs zone that identify the various services that the DC hosts. These
service locator records were discussed earlier in this chapter.

Manually Registering a DC's DNS Records
DCs use multiple services to automatically register their DNS records.
The netlogon service is responsible for registering the DC's CNAME and
SRV locator records. In Windows Server 2008 and Windows Server 2008
R2, the DNS client service is responsible for registering the DC's host
record. If your DCs are running on Windows 2000 Server or Windows
Server 2003, the DHCP client service is used to register the host record
instead. DCs use dynamic updates in DNS, so they register these records
themselves when they're able to. Sometimes you may need to register
these records manually. Perhaps the DNS server that you're using doesn't
support dynamic DNS, or maybe there's a problem with the DC and the
records aren't registering.

In either case, it's not fun to manually type in server GUIDs, and it can
generally be an error-prone process. So for Microsoft DNS servers, you
can use the DNS WMI interface to manually register the records. To do
this, you first need to understand how to register DNS records in
PowerShell.

Using the MicrosoftDNS_ResourceRecord Class
There are a couple of different ways to register DNS records with
PowerShell. The first way that we'll examine uses the
MicrosoftDNS_ResourceRecord class in WMI. This class contains a method called
CreateInstanceFromTextRepresentation, which allows you to create a resource
record from its standard DNS text string. This is the text of the record as
it would exist in the DNS zone file. A typical resource record's text
representation looks like the following:
sea-dc01.contoso.com. IN A 192.168.1.130

This representation is broken into multiple fields. Each field is
separated by one or more spaces. The first is the name of the record. In
the previous example, this is the DNS record for our DC, which is named
sea-dc01.contoso.com. Notice that this name ends with a dot. In a typical DNS

zone file, a resource record entry can either end in a dot or not. If it
doesn't end in a dot, the name of the domain is appended to the end of the
record. On the other hand, the dot at the end signifies that this is the
complete name of the record.

The second field (IN) is the class of the record. IN signifies that the class
is an Internet record; that will be the case for the records you'll typically
be working with.

The third field represents the type of record. In this case, a host record
(which maps a DNS name to an IP address) is represented by A. Often
you'll hear people refer to host record and A record interchangeably. This
field is followed by a field that contains the record's data.

The fourth field is also referred to as the RDATA field. This is the actual
data of the resource record. In this case, because we're looking at an A
record, this data is the IP address that the DNS name resolves to. This
will be different for different types of DNS records.

To create the host record, you call the CreateInstanceFromTextRepresentation
method and pass in the name of the DNS server on which you're creating
the record, the name of the zone in which you're creating the record, and
the text representation we just described. The following PowerShell
commands demonstrate this by creating a host record for
printserver.contoso.com, resolving to the IP address 192.168.0.10 in the
contoso.com DNS zone:
$strDNSServer = “sea-dc01.contoso.com”
$strDNSDomain = “contoso.com”
$strRR = “printserver.contoso.com. IN A 192.168.0.10”

$objRRClass = [WMICLASS]”root\MicrosoftDNS:
 MicrosoftDNS_ResourceRecord”

$objRR.CreateInstanceFromTextRepresentation($strDNSServer,
 $strDNSDomain, $strRR)

In addition to host records, you also need to register alias records in the
DNS. These alias (or CNAME) records are DNS records that point one
DNS name to another DNS name. DCs use alias records to map a DNS
name containing the DC's GUID to its host record.

You can use the same process for creating alias records that you use

when creating host records. The difference is in the text representation
that you pass to the CreateInstanceFromTextRepresentation method. For alias
records, you need to specify CNAME as the type of the record and
include the DNS name that the record is an alias for in the RDATA field.
The following example is a text representation of an alias record:
www.contoso.com. IN CNAME contoso-web.contoso.com.

In this example, the record is an alias for contoso-web.contoso.com called
www.contoso.com. For DCs, however, the alias record might resemble the
following:
dd96e0ac-624d-4d15-9b57-b083c3d831bc._msdcs.contoso.com. IN
CNAME sea-dc01.contoso.com.

One thing that you may notice is that the record's name in the RDATA
ends in a dot, similar to how the first field in the text representation
looks. You must include that dot, or the WMI method will fail. The
following example demonstrates how to create the GUID CNAME record.
You'll notice how similar this is to the previous commands for registering
the host records. The difference between the two is the DNS domain in
which the record is registered and the text representation of the record
itself:
$strDNSServer = “sea-dc01.contoso.com”
$strDNSDomain = “_msdcs.contoso.com”

$strRR = “dd96e0ac-624d-4d15-9b57-b083c3d831bc._msdcs.contoso
 .com. IN CNAME sea-dc01.contoso.com.”

$objRRClass =
 [WMICLASS]“root\MicrosoftDNS:MicrosoftDNS_ResourceRecord”

$objRR.CreateInstanceFromTextRepresentation($strDNSServer,
 $strDNSDomain, $strRR)

The last record type that you need to register is the service locator
records. A DC needs to create multiple SRV records in order for AD to
function correctly. Also, the SRV records that need to be registered
depend not only on what site the DC is in, but also on what services the
DC is advertising. For example, the DC that is acting as the PDC
emulator for the domain registers an SRV record in DNS that indicates
this. One way to approach this is to run a tool to determine which records

http://www.contoso.com

are missing. The tool for this job is called DCDIAG.EXE. When you run the
tool, use the following command:
dcdiag /test:DNS /DnsRecordRegistration

The results of this command tell you what records are missing. An
example of the output is shown in Figure 5.5. Notice here that a site-
specific LDAP record for this DC is missing.

Figure 5.5 DCDIAG identifies a missing LDAP SRV record.

After you know which SRV record needs to be registered, you can use
the CreateInstanceFromTextRepresentation WMI method to register the record.
For SRV locator records, the text representation string is slightly
different. An SRV representation resembles the following:
_ldap._tcp.Seattle._sites.contoso.com. IN SRV 0 100 389

 SEA-DC01.contoso.com.

The difference here is in the RDATA field, which includes a few
different items that pertain to the SRV record. These items (in order) are

The record's priority (0)
The record's weight (100)
The port that the service is listening on (389)
The server that the service is running on (SEA-DC01.contoso.com)

A Better Way
If you had to use this process every time you wanted to manually register
the DC's DNS records, it would be somewhat labor-intensive. And after
all, the purpose of scripting and PowerShell is to make our lives easier.
Fortunately, there's another way to manually register a DC's records.

On each DC, there is a file called netlogon.dns. This file exists in the
system folder under the System32\Config directory. For a default install of
Windows, this file is found at
C:\Windows\System32\Config\netlogon.dns

The netlogon.dns file is the text representation of every DNS resource
record that the DC registers dynamically through the netlogon service. If
the DC can't dynamically register these records, you can use this file to
register them manually.

Forcing a DC to Register Its Service Records
If you have a DNS server that supports dynamic updates, but the DC's
records aren't up to date, you can attempt to force this update. There are a
couple of ways to accomplish this:

Restart the netlogon service on the DC that needs to refresh its
records.
Run NLTEST /DSREGDNS from a command prompt.

When you restart the netlogon service, the service attempts to register
the SRV records during its startup process. In PowerShell, you can force

the DC to attempt this registration by calling the Restart-Service cmdlet:
Restart-Service netlogon

NLTEST.EXE is a tool that allows you to perform some network-related
tasks. A lot of the functionality of NLTEST can be performed using
PowerShell directly. However, NLTEST does some things that are more
difficult to reproduce in a PowerShell. NLTEST is included in Windows
Server, so in the case of forcing DNS record registration, it makes sense
to call NLTEST directly from your PowerShell scripts. The difference
between using NLTEST and restarting the netlogon service is that there is no
downtime during the record registration. To use NLTEST to force DCs to
register their DNS SRV locator records, you use the following command,
either in PowerShell or in a Windows command prompt:
nltest /dsregdns

Adjusting the Weight and Priority of Active
Directory Service Records
Each service record that is registered by a DC has a weight and priority
associated with it. This weight and priority are used together to determine
how frequently a particular DC is used for the services it provides. When
multiple SRV records are registered for the same service, DNS uses a
round-robin technique to resolve the name.

For example, consider the case where there are two DCs, SEA-DC01
and SEA-DC02. In this case, both DCs register an SRV record for the
LDAP service. When a client performs a DNS query to determine which
DC is advertising the LDAP service, DNS chooses one of these two DCs.
To make this choice, DNS sees that there are two records, so in each DNS
response, the DNS server alternates which record is first in the list. This
helps to ensure that the load for these services is distributed among
multiple DCs. The weight and priority setting affects how often a
particular DC is used, if at all.

Adjusting the Weight
The weight setting is used relative to other records. By default, the weight
used for all DC SRV records is 100. If two DCs have SRV records with
the weight of 100, then they're both used equally. This means that out of
200 queries, each DC will be returned as the first entry in the response
list 100 times. If you change the weight for one of those DCs, however,
this affects how frequently it's first in the list. Let's assume that you
change the weight of one SEA-DC01 to 50 and leave the SEA-DC02 at
100. That means that for every 150 queries, SEA-DC01 will be returned
first in the list 50 times and SEA-DC02 will be first 100 times. In this
case, SEA-DC02 is used 66 percent of the time. By doing this, SEA-DC02
incurs twice the load of SEA-DC01.

Not all organizations should adjust the weight of DC SRV records,
although sometimes this is appropriate. One instance is if the hardware of
a particular DC is older than other DCs. You'll probably want the DC with
the older hardware to be used less frequently. Another case where it may
be acceptable to adjust the weight is when a particular DC hosts services
other than AD. Those other services may be using DC resources, so you
might not want to tax the server with the additional load of a full-time
DC.

To adjust the weight, however, you don't simply want to modify the
weight setting on the SRV record. This approach will make the change in
DNS, but it also has an adverse effect. When the DC's netlogon service
restarts (at the next reboot, for example), it will see that the SRV record
on which you adjusted the weight isn't the same record that is recorded in
its netlogon.dns file. Then, the netlogon service will proceed to create a new
SRV record that does match what it thinks should be there. However,
when it does, the record that you manually adjusted isn't removed. The
end result is that there are two SRV records for that service pointing to
the same DC. This has the opposite effect that you intended.

Imagine that you manually changed the weight on SEA-DC01 to 50,

and then SEA-DC01 rebooted. When the netlogon service starts, it will
register a new record with a weight of 100. So now you have the
following SRV records registered for that service:

SEA-DC01 with a weight of 50
SEA-DC01 with a weight of 100
SEA-DC02 with a weight of 100

Now, out of every 250 queries, SEA-DC01 will be selected 150 times,
meaning that it incurs 60 percent of the load. To properly set the weight
of the DCs' records, you need to make the change in such a way that
netlogon can recognize the change and know that the adjusted weight is
the correct one. To do this, you can adjust the weight by adding a
Registry key called LdapSrvWeight to the following Registry location:
HKLM\System\CurrentControlSet\Services\Netlogon\Parameters

Set this key to a DWORD type, and give it the weight of the record as
the value. To make a proper weight change for the scenario that was just
described, set LdapSrvWeight to be a value of 50. You can do this in
PowerShell using the following steps:

1. In PowerShell, change to the HKEY_LOCAL_MACHINE hive in the Registry:
cd HKLM:

2. Change to the path SYSTEM\CurrentControlSet\Services\Netlogon\Parameters:
cd system\currentcontrolset\services\netlogon\parameters

3. Create a new DWORD value called LdapSrvWeight, and set it to the
desired weight of the DC's SRV records. To do this, use the New-
ItemProperty cmdlet, and specify LdapSrvWeight as the Name parameter. Use
the weight for the Value parameter and DWORD for the PropertyType
parameter:
New-ItemProperty -Path . -Name LdapSrvWeight -Value 50
-PropertyType DWORD

If you want to make this change as part of a script, you can use the
following one-liner:
New-ItemProperty -Path “HKLM:\System\CurrentControlSet\Services\

 Netlogon\Parameters” -Name LdapSrvWeight -Value 50
 -PropertyType DWORD

Adjusting the Priority
When you adjust the priority setting of an SRV record, it has a different
effect than the weight. The weight determines how frequently a DC is
used, but the priority determines whether the DC is used in the first place.
If you have two DCs (for example, SEA-DC01 and SEA-DC02) with the
same priority, then both of those DCs can be returned in the query for that
SRV record. However, if they have different priorities, the DC with the
lower priority value is used. The significance of the values for the
priority is the opposite of the weight setting. With the weight, the higher
values get used more frequently. With priority, the lower value means
that the DC is used.

Like the weight setting, the priority setting can't be adjusted by
manually editing the DNS record. There is a Registry key for the priority
that you must set on the DC whose priority you want to change. To
change the priority, create a new DWORD Registry value called
LdapSrvPriority in the following Registry location:
HKLM\SYSTEM\CurrentControlSet\Services\Netlogon\Parameters

Set the value of the LdapSrvPriority key to be the priority setting that you
want this DC's SRV records to have. You can do this using the following
steps:

1. In PowerShell, change to the HKEY_LOCAL_MACHINE hive in the Registry:
cd HKLM:

2. Change to the path SYSTEM\CurrentControlSet\Services\Netlogon\Parameters:
cd SYSTEM\CurrentControlSet\Services\Netlogon\Parameters

3. Create a new DWORD value called LdapSrvPriority, and set it to the
desired priority of the DC's SRV records. To do this, use the New-
ItemProperty cmdlet, and specify LdapSrvPriority as the Name parameter. Use
the priority for the Value parameter and DWORD for the PropertyType
parameter:

New-ItemProperty -Path . -Name LdapSrvPriority -Value 10
 -PropertyType DWORD

If you want to make this change as part of a script, you can use the
following one-liner:
New-ItemProperty -Path “HKLM:\System\CurrentControlSet\Services\

 Netlogon\Parameters” -Name LdapSrvPriority -Value 10
 -PropertyType DWORD

By default, all SRV records for the DC have a priority of 0.
Therefore, by changing the priority to any value greater than 0, you
ensure that the DC isn't used unless all the other lower-priority DCs are
offline.

Manage Domain Time
Another important dependency that AD has is the accuracy of the time on
the systems in the forest. The Kerberos authentication protocol used by
AD uses the time values on the systems during the authentication
sequence to ensure that network credentials aren't reused in replay
attacks. By default, the time is allowed to be skewed by 5 minutes in
either direction—5 minutes early or 5 minutes late. The time comparison
occurs with Universal Time Coordinates, so the time zone of the clients
and servers don't affect the authentication sequence if the time is set
correctly.

To aid in keeping the time close in computers across the forest,
Windows offers a time-synchronization system. This system is based on
the Network Time Protocol (NTP), which is defined in RFC 1305 to
standardize how time synchronization occurs across the network. The
W32Time service in Windows is responsible for synchronizing the
system's clock against its configured NTP time source.

AD defines what this time-synchronization hierarchy looks like inside a
forest. The DC that holds the PDC emulator Flexible Single Master of
Operation (FSMO) role for the forest's root domain is the authoritative

time source for the forest. Even if this server's time is wrong,
authentication within a forest will still work successfully because all the
machines will be wrong by the same amount of time. The PDC emulators
in the next level of child domains (the ones whose parent is the forest's
root domain) synchronize their time from the root forest's PDC emulator.
The time-synchronization hierarchy continues in like fashion throughout
the remainder of the domain, where the PDC emulator in each child
domain synchronizes its time from the PDC emulator in its parent
domain.

Inside each domain, the DCs that don't hold the PDC emulator FSMO
role synchronize their clocks with the PDC emulator inside the same
domain. From there, the clients and servers in a domain synchronize their
time with the DCs that they authenticated with. Figure 5.6 illustrates this
time-synchronization hierarchy.

Figure 5.6 Time synchronization inside the forest

View Time Service Information
The time service can be manually changed on each client and server, and
it can be configured to point to an alternate time source. Therefore, you'll

want to understand how the time is currently being synchronized in your
environment and be able to enable some advanced logging functionality
to help with troubleshooting issues that you may encounter.

Determining How Time Is Synchronized in the
Forest
To determine how time is synchronized in the forest, you need to look at
what each server is synchronizing its time with. You can find this out by
looking at the Registry key called Type under the following Registry
location:
HKLM\System\CurrentControlSet\Services\W32Time\Parameters

Table 5.1 describes the potential values that the Type key can have.

Table 5.1 Possible Type Values for Synchronizing Time
Value Description

NT5DS When configured, this computer will synchronize its time with the domain time hierarchy. Any time server entry
specified in the NtpServer key is ignored.

NTP The computer is configured to the manually configured time servers for synchronizing time. The servers used are listed
in the NtpServer key.

NoSync No time synchronization is occurring on this computer.

To determine how time is synchronized in the forest, we'll enumerate
the domains in the forest and examine this Registry key on each DC. Only
the DC that holds the PDC emulator role in the forest root domain should
have an external time source set. Every other DC should be using the
domain time hierarchy.

It's important to note that some organizations designate certain DCs as
backup FSMO role holders. If you do this, you should ensure that the DC
that is the backup for the PDC emulator in the root domain is also
configured to point to the same external time source as your PDC
emulator. In the event of an emergency where you have to transfer or
seize the PDC emulator role, you may forget to configure this external
time server, so it's a good idea to do it ahead of time.

You can use the Registry provider to determine whether a computer is

using the domain time hierarchy. The following command returns the
value of the Type key for the computer you're currently logged in at:
Get-ItemProperty -Path “HKLM:\System\CurrentControlSet\Services\
 W32Time\Parameters” -Name Type

The problem with this command is that it only works on the local
machine. If you want to query the time source for each DC, you'll need to
execute this command remotely. For remote Registry access, we typically
default to using the StdRegProv class in WMI. The following commands get
the Type key from the Registry on the DC named SEA-DC01:
$objReg = [WMICLASS]“\\SEA-DC01\root\cimv2:StdRegProv”
$objReg.GetStringValue(2147483650, “SYSTEM\CurrentControlSet\Services\W32Time\Parameters”, “Type”)

The script in Listing 5.4 uses this technique to query all the DCs in the
forest and report back on the ones that aren't synchronizing their clocks
according to the domain time hierarchy.

Listing 5.4: CheckDCTimeSync.ps1

File Name: CheckDCTimeSync.ps1
Description:
Examines every Domain Controller in the forest and reports
on which DCs aren't using the domain time hierarchy for
clock sync.
##
Import the Active Directory Module
Import-Module ActiveDirectory
Get the list of domains
$objForest = Get-ADForest
$colDomains = $objForest.Domains
Enumerate the Domain Controllers in each domain
foreach ($strDomain in $colDomains)
{
 $objDomain = Get-ADDomain $strDomain
 $DCCN = $objDomain.DomainControllersContainer
 $colDCs = Get-ADComputer -SearchBase $DCCN -Filter *

 Write-Host
 Write-Host “Domain Controllers that are not synchronizing” +
 “ time with the domain time hierarchy”

 foreach ($objDC in $colDCs)
 {
 ## Look up the Type key in the registry on each DC
 $strDCName = $objDC.DNSHostName
 $objReg = [WMICLASS]“\\$($strDCName)\root\cimv2:StdRegProv”

 $objType = $objReg.GetStringValue(2147483650, “SYSTEM\” +
 “CurrentControlSet\Services\W32Time\Parameters”, “Type”)
 ## If the Type indicates something other than NT5DS, display
 ## this DC in the list
 if ($objType.sValue.CompareTo(“NT5DS”) -ne 0)
 {
 Write-Host “- “ $strDCName
 }
 } Write-Host
}

The previous script was written to use the AD module for discovering
the DCs in the forest. The script in Listing 5.5 provides the same
functionality with Active Directory Services Interface (ADSI), in the
event that you can't use the AD module.

Listing 5.5: CheckDCTimeSync-ADSI.ps1

File Name: CheckDCTimeSync-ADSI.ps1
Description:
Examines every Domain Controller in the forest and reports
on which DCs aren't using the domain time hierarchy for
clock sync. This script uses ADSI to enumerate the Domain
Controllers in the forest.
##
Write-Host “‘nDomain Controllers that are not synchronizing” ‘
 “time with the domain time hierarchy”
Get the forest object
$objForest = [DirectoryServices.ActiveDirectory.Forest]::‘
 GetCurrentForest()
Enumerate the Domains the forest
foreach ($objDomain in $objForest.Domains)
{
 ## Enumerate the DCs in each Domain
 foreach ($objDC in $objDomain.DomainControllers)
 {
 ## Look up the Type key in the registry on each DC
 $strDCName = $objDC.Name
 $objReg = [WMICLASS]“\\$($strDCName)\root\cimv2:StdRegProv”
 $objType = $objReg.GetStringValue(2147483650, “SYSTEM\” +
 “CurrentControlSet\Services\W32Time\Parameters”, “Type”)

 ## If the Type indicates something other than NT5DS, display
 ## this DC in the list
 if ($objType.sValue.CompareTo(“NT5DS”) -gt 0)
 {
 Write-Host “- “ $strDCName
 }
 } Write-Host
}

Enabling the Debug Log for the Time Service
Sometimes you may need more information when debugging issues with
time synchronization. The time-synchronization service in Windows
allows you to enable debug logging, which provides verbose information
about what the time service is doing. Often, when you're troubleshooting
time-synchronization issues on a computer, the debug log can be very
handy.

Enabling the logs is a two-step process:
1. Configure the debug log settings in the Registry.
2. Restart the Windows Time service in order for the new settings to
take effect.

The debug log settings are found in the Registry under the following
location:
HKLM\System\CurrentControlSet\Services\W32Time\Config

Three Registry keys in this location control the behavior of the debug
log:

FileLogName: The full path to where you want the log file to be written.
FileLogSize: How big the log should get, specified in bytes.
FileLogEntries: The amount of information you want in your log
entries. We recommend turning on all the possible logging entries
by setting this key to a string value of “0-300”.

To enable the log, you simply need to add these Registry keys. On the
other hand, if you want to turn off the time debug log, you can delete
these keys. The PowerShell script in Listing 5.6 will either enable or
disable the time debug log. When it enables the log, it sets the
appropriate Registry keys and reloads the Windows Time service
configuration in order for the debug log change to take effect.

Listing 5.6: SetTimeDebugLog.ps1

File Name: SetTimeDebugLog.ps1
Description:

Enables or disables the debug log for the Windows Time
service on the current computer
##

param([switch]$Enable, [switch]$Disable)

Set the debug log registry keys
$reg_path = “HKLM:\System\CurrentControlSet\Services” +
 “\W32Time\Config”

function EnableTimeDebugLog()
{
 $r = New-ItemProperty -Path $reg_path -Name “FileLogName” ‘
 -Value “C:\w32time_debug.log” -PropertyType String ‘
 -ErrorAction silentlyContinue

 $r = New-ItemProperty -Path $reg_path -Name “FileLogSize” ‘
 -Value 10485760 -PropertyType DWORD ‘
 -ErrorAction silentlyContinue

 $r = New-ItemProperty -Path $reg_path -Name “FileLogEntries” ‘
 -Value “0-300” -PropertyType String ‘
 -ErrorAction silentlyContinue

 Write-Host “Time Debug Log Enabled”
}

function DisableTimeDebugLog()
{
 Remove-ItemProperty -Path $reg_path -Name “FileLogName” ‘
 -ErrorAction silentlyContinue

 Remove-ItemProperty -Path $reg_path -Name “FileLogSize” ‘
 -ErrorAction silentlyContinue

 Remove-ItemProperty -Path $reg_path -Name “FileLogEntries” ‘
 -ErrorAction silentlyContinue

 Write-Host “Time Debug Log Disabled”
}

if ($Enable)
{
 EnableTimeDebugLog
}
else
{
 DisableTimeDebugLog
}

Reload the configuration of the Windows Time service
w32tm /config /update

Configure the Time Service
Understanding how your time-synchronization strategy is laid out is just
one aspect of administering time synchronization for the domain. You
also have to know how to make the necessary configuration changes.
Some of these changes may be time settings that you want to target at a
specific computer in your domain. Others may be time-configuration
settings that you want to ensure are consistently applied to your DCs. In
this section, we'll look at a few of the items you need to configure for
time synchronization and provide some ways to automate it via
PowerShell.

Configuring a Forest Time Source
Because the time-synchronization hierarchy for a forest chains back to
the DC in the forest root domain that holds the PDC emulator FSMO role,
the only thing you need to configure to use an external time source is the
NTP server that this DC synchronizes its time with. This setting is
controlled via a couple of Registry keys on this DC.

The first key is one that we've already talked about: the Type key. It's
located in the following Registry location:
HKLM\System\CurrentControlSet\Services\W32Time\Parameters

The Type key indicates whether the computer is synchronizing time from
an external NTP provider, the internal domain hierarchy, or not at all. To
configure the DC to synchronize its time from an external NTP provider,
you'll want to set the value of the Type key to NTP. The following commands
make this configuration change. Make sure that you substitute <DCName> for
the name of the PDC emulator role holder for the forest root domain:
$objReg = [WMICLASS]“\\<DCName>\root\cimv2:StdRegProv”

$objReg.SetStringValue(2147483650,

 “SYSTEM\CurrentControlSet\Services\W32Time\Parameters”,
 “Type”, “NTP”)

The next key is NtpServer, which is a string value that is stored in
HKLM\System\CurrentControlSet\Services\W32Time\Parameters

The NtpServer key is used to specify the name or IP address of the server
from which you're synchronizing the time. By default, this is set to
time.windows.com, but many organizations set it to a government-run NTP
service, such as one hosted by the National Institute of Standards and
Technology (NIST). You can find the list of NTP servers hosted by NIST
at http://tf.nist.gov/tf-cgi/servers.cgi.

You can use the following commands to set the NTP server in this key.
If you want to configure more than one NTP server, separate the entries
with a space:
$objReg = [WMICLASS]“\\<DCName>\root\cimv2:StdRegProv”

$objReg.SetStringValue(2147483650,

 “SYSTEM\CurrentControlSet\Services\W32Time\Parameters”,
 “NtpServer”, “time.nist.gov”)

The PowerShell script in Listing 5.7 allows you to set the external time
server for the forest. You can pass in the list of time servers separated by
spaces, and the script will find the PDC emulator role holder for the
forest root domain and set the time source on it. This is a handy script to
use if you manually fail over the PDC emulator role due to a downed DC.
You can also set the default NTP server list manually in a script so you
don't need to specify a script parameter to set it.

Listing 5.7: SetForestTimeSource.ps1

File Name: SetForestTimeSource.ps1
Description:
Discovers which Domain Controller is the PDC Emulator in the
forest's root domain and configures it to use an external
NTP time source.
##

param($NTPSource)

Import the Active Directory module
Import-Module ActiveDirectory

Default time source. Use this time service if the NTPSource
parameter isn't specified when the script is run.
$time_source = “time.nist.gov”

if ($NTPSource -ne $null)

http://tf.nist.gov/tf-cgi/servers.cgi

{
 $time_source = $NTPSource
}

Obtain the name of the PDC Emulator in the root domain
$objForest = Get-ADForest
$objRootDomain = Get-ADDomain $objForest.RootDomain
$strPDCE = $objRootDomain.PDCEmulator

Set the NTP registry keys on the PDCE
$objReg = [WMICLASS]“\\$($strPDCE)\root\cimv2:StdRegProv”
$r = $objReg.SetStringValue(2147483650,
 “SYSTEM\CurrentControlSet\Services\W32Time\Parameters”,
 “Type”, “NTP”)
$r = $objReg.SetStringValue(2147483650,
 “SYSTEM\CurrentControlSet\Services\W32Time\Parameters”,
 “NtpServer”, $time_source)

Restart the time service
$objTimeSvc = gwmi Win32_Service -Computer $strPDCE ‘
 -Filter “name=‘W32Time’”
$r = $objTimeSvc.StopService()
$r = $objTimeSvc.StartService()

Write-Host “Forest time source set to $($time_source)”

The previous script uses the AD module for discovering the PDC
emulator in the forest root domain. If you aren't able to use the AD
module, you can use the alternative script in Listing 5.8, which uses
ADSI instead.

Listing 5.8: SetForestTimeSource-ADSI.ps1

File Name: SetForestTimeSource-ADSI.ps1
Description:
Discovers which Domain Controller is the PDC Emulator in
forest's root domain and configures it to use an external
NTP time source. This version of the script uses ADSI to
discover the PDC Emulator in the forest root domain.
##

param($NTPSource)

Default time source. Use this time service if the NTPSource
parameter isn't specified when the script is run.
$time_source = “time.nist.gov”

if ($NTPSource -ne $null)
{
 $time_source = $NTPSource
}

Obtain the name of the PDC Emulator in the root domain
$objForest = [DirectoryServices.ActiveDirectory.Forest]::‘
 GetCurrentForest()
$objContext = New-Object ‘
 DirectoryServices.ActiveDirectory.DirectoryContext(‘domain’,
 $objForest.RootDomain)
$objRootDomain = [DirectoryServices.ActiveDirectory.Domain]::‘
 GetDomain($objContext)
$strPDCE = $objRootDomain.PdcRoleOwner

Set the NTP registry keys on the PDCE
$objReg = [WMICLASS]“\\$($strPDCE)\root\cimv2:StdRegProv”
$r = $objReg.SetStringValue(2147483650,
 “SYSTEM\CurrentControlSet\Services\W32Time\Parameters”,
 “Type”, “NTP”)
$r = $objReg.SetStringValue(2147483650,
 “SYSTEM\CurrentControlSet\Services\W32Time\Parameters”,
 “NtpServer”, $time_source)

Restart the time service
$objTimeSvc = gwmi Win32_Service -Computer $strPDCE ‘
 -Filter “name=‘W32Time’”
$r = $objTimeSvc.StopService()
$r = $objTimeSvc.StartService()

Write-Host “Forest time source set to $($time_source)”

Removing Custom Time Settings
You may be in a situation where you have a manual time synchronization
configured on computers in your forest. One way to convert them over to
the domain time hierarchy is to use a PowerShell script to change their
time source. To convert the time-synchronization method to the domain
time hierarchy, you only need to change the Registry value called Type in
the following location:
HKLM\System\CurrentControlSet\Services\W32Time\Parameters

T h e Type value determines how the computer is configured to
synchronize its time. If you recall from Table 5.1 earlier in this chapter,
the possible options for this value are NT5DS, NTP, or NoSync.

In this case, you need to determine if the Type value is already
configured to NT5DS. If so, then this computer is already synchronizing its
time with the domain. If not, then you must set it to the value of NT5DS to
tell it to synchronize its time with the domain hierarchy. Listing 5.9

performs this action on the computer that you specify when you run the
script. To execute this script and remove the custom time-
synchronization settings from a computer, run the following command:
RemoveCustomTime.ps1 -ComputerName “[ComputerName]”

Listing 5.9: RemoveCustomTime.ps1

File Name: RemoveCustomTime.ps1
Description:
Removes the custom time setting from the computer specified.
Forces the specified computer to synchronize time according
to the domain time hierarchy.
##
param([string]$ComputerName=””)
if ($ComputerName -eq “”) { $ComputerName = “.” }
Open the HKLM registry key on the computer
$reg = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(
 “LocalMachine”, $ComputerName)
Open the Parameters sub key
$key = $reg.OpenSubKey(“System\CurrentControlSet\Services\” +
 “W32Time\Parameters”, $true)
Set the Type value to NT5DS to indicate that the time is
synchronized via the domain hierarchy
$key.SetValue(“Type”, “NT5DS”, “String”)
Restart the time service
$objTimeSvc = gwmi Win32_Service -Computer $ComputerName ‘
 -Filter “name=‘W32Time’”
$ret = $objTimeSvc.StopService()
$ret = $objTimeSvc.StartService()
Write-Host “$($ComputerName) updated”

Ensuring That Domain Controllers Synchronize
Their Clocks
If your AD domain has been around for a while, it's very possible that you
may have moved FSMO roles around and changed time sources on
various DCs. For example, let's assume that you configure the PDC
emulator in your forest root domain with an external time source that is
supplied to your forest through the domain time hierarchy. At some point
in the future, you may have to move that PDC emulator role to another
DC, either temporarily or permanently. What happens to that time
source? Chances are, you probably didn't think to reset that DC's time

source back to the domain time hierarchy. Also, you may have not
remembered to configure the new PDC emulator role holder to use the
external time source. If this is the case, you could potentially have
problems with the DC that is now pointing to a different time source than
the rest of your domain.

Fortunately, you can use PowerShell to help write a script that ensures
you'll never encounter this problem. The script in Listing 5.10 does two
things:

It finds the PDC emulator in the root domain and determines
whether its time source is pointing to an external clock.
It examines every other DC and, if the DC is configured to point to
another time server, reconfigures the DC to use the domain time
hierarchy.

This is one script that you may want to run periodically without having
to think about the configuration parameters. Therefore, you can configure
your domain's external time source under the $external_clock variable at the
beginning of the script. When this script is run, it always ensures that the
DC holding the PDC emulator FSMO role in your forest root domain is
using this external time source. Every other DC is configured to use the
domain time hierarchy.

Listing 5.10: SetDCTimeSource.ps1

File Name: SetDCTimeSource.ps1
Description:
Ensures that the PDCE in the forest root domain is
synchronizing with the external clock and that every other
DC in the forest is using the domain time hierarchy.
##
Configure the external clock that you want to synchronize with
$external_clock = “nist1.aol-va.symmetricom.com”
Import the Active Directory Module
Import-Module ActiveDirectory
##
Part 1 - Configure the PDCE in the root domain to sync with
the external time source
##
Get the name of the PDC Emulator in the root domain
$objForest = Get-ADForest

$objRootDomain = Get-ADDomain $objForest.RootDomain
$strPDCE = $objRootDomain.PDCEmulator
$objReg = [WMICLASS]“\\$($strPDCE)\root\cimv2:StdRegProv”
$objType = $objReg.GetStringValue(2147483650,
 “SYSTEM\CurrentControlSet\Services\W32Time\Parameters”,
 “Type”)
If the server is configured for NTP
if ($objType.sValue.CompareTo(“NTP”) -eq 0)
{
 # Get the name of the external clock that the PDCE is
 # synchronizing with
 $curServer = $objReg.GetStringValue(2147483650,
 “SYSTEM\CurrentControlSet\Services\W32Time\Parameters”,
 “NtpServer”)
 # If the external clock is not the clock that you want
 # the server to sync with, then change it
 if ($curServer.sValue.CompareTo($external_clock) -ne 0)
 {
 $ret = $objReg.SetStringValue(2147483650,
 “SYSTEM\CurrentControlSet\Services\W32Time\Parameters”,
 “NtpServer”, $external_clock)
 # Restart the time service
 $objTimeSvc = gwmi Win32_Service -Computer $strPDCE ‘
 -Filter “name=‘W32Time’”
 $ret = $objTimeSvc.StopService()
 $ret = $objTimeSvc.StartService()
 Write-Host “PDCE ($($strPDCE)) is already configured to” ‘
 “use an external time source, but it's pointing to the” ‘
 “wrong server. Updated PDCE time source to” ‘
 “$($external_clock)”
 }
}
else
{
 # The PDCE is not set for NTP, so set it
 $ret = $objReg.SetStringValue(2147483650,
 “SYSTEM\CurrentControlSet\Services\W32Time\Parameters”,
 “Type”, “NTP”)
 $ret = $objReg.SetStringValue(2147483650,
 “SYSTEM\CurrentControlSet\Services\W32Time\Parameters”,
 “NtpServer”, $external_clock)
 # Restart the time service
 $objTimeSvc = gwmi Win32_Service -Computer $strPDCE ‘
 -Filter “name=‘W32Time’”
 $ret = $objTimeSvc.StopService()
 $ret = $objTimeSvc.StartService()
 Write-Host “PDCE ($($strPDCE)) is now configured to use” ‘
 “$($external_clock) as its time source.”
}
##
Part 2 - Configure every other DC to sync with the domain
time hierarchy
##
Get a list of domains in the forest
$colDomains = $objForest.Domains

Enumerate each domain name
foreach ($strDomain in $colDomains)
{
 # Get the domain object based on its name
 $objDomain = Get-ADDomain $strDomain
 # If this is the root domain
 if ($objDomain.DnsRoot.ToLower() -eq
 $objRootDomain.DnsRoot.ToLower())
 {
 foreach ($strDC in $objDomain.ReplicaDirectoryServers)
 {
 if ($strDC.ToLower() -ne $strPDCE.ToLower())
 {
 $objReg = [WMICLASS]“\\$($strDC)\root\cimv2:StdRegProv”
 $objType = $objReg.GetStringValue(2147483650, “SYSTEM” +
 “\CurrentControlSet\Services\W32Time\Parameters”,
 “Type”)
 # If the DC is not synchronizing with the domain time
 if ($objType.sValue.ToLower() -ne “nt5ds”)
 {
 $ret = $objReg.SetStringValue(2147483650, “SYSTEM” +
 “\CurrentControlSet\Services\W32Time\Parameters”,
 “Type”, “NTP”)
 Write-Host “Updated $($strDC) to use the domain” ‘
 “time hierarchy.”
 # Restart the time service
 $objTimeSvc = gwmi Win32_Service ‘
 -Computer $strDC -Filter “name=‘W32Time’”
 $ret = $objTimeSvc.StopService()
 $ret = $objTimeSvc.StartService()
 }
 }
 }
 }
}

The previous script uses the AD module for locating the PDC emulator
for the forest root domain and for enumerating the DCs in the forest. If
you can't use the AD module, you can use the script in Listing 5.11
instead, which uses ADSI to perform the same tasks.

Listing 5.11: SetDCTimeSource-ADSI.ps1

File Name: SetDCTimeSource-ADSI.ps1
Description:
Ensures that the PDCE in the forest root domain is
synchronizing with the external clock and that every other
DC in the forest is using the domain time hierarchy. This
version of the script leverages ADSI for discovering the
PDC Emulator in the forest root domain and for enumerating
the Domain Controllers in the forest.

##
Configure the external clock that you want to synchronize with
$external_clock = “nist1.aol-va.symmetricom.com”
##
Part 1 - Configure the PDCE in the root domain to sync with
the external time source
##
Obtain the name of the PDC Emulator in the root domain
$objForest = [DirectoryServices.ActiveDirectory.Forest]::‘
 GetCurrentForest()
$objContext = New-Object ‘
 DirectoryServices.ActiveDirectory.DirectoryContext(‘domain’,
 $objForest.RootDomain)
$objRootDomain = [DirectoryServices.ActiveDirectory.Domain]::‘
 GetDomain($objContext)
$strPDCE = $objRootDomain.PdcRoleOwner.Name
$objReg = [WMICLASS]“\\$($strPDCE)\root\cimv2:StdRegProv”
$objType = $objReg.GetStringValue(2147483650,
 “SYSTEM\CurrentControlSet\Services\W32Time\Parameters”,
 “Type”)
If the server is configured for NTP
if ($objType.sValue.CompareTo(“NTP”) -eq 0)
{
 # Get the name of the external clock that the PDCE is
 # synchronizing with
 $curServer = $objReg.GetStringValue(2147483650,
 “SYSTEM\CurrentControlSet\Services\W32Time\Parameters”,
 “NtpServer”)
 # If the external clock is not the clock that you want
 # the server to sync with, then change it
 if ($curServer.sValue.CompareTo($external_clock) -ne 0)
 {
 $ret = $objReg.SetStringValue(2147483650,
 “SYSTEM\CurrentControlSet\Services\W32Time\Parameters”,
 “NtpServer”, $external_clock)
 # Restart the time service
 $objTimeSvc = gwmi Win32_Service -Computer $strPDCE ‘
 -Filter “name=‘W32Time’”
 $ret = $objTimeSvc.StopService()
 $ret = $objTimeSvc.StartService()
 Write-Host “PDCE ($($strPDCE)) is already configured to” ‘
 “use an external time source, but it's pointing to the” ‘
 “wrong server. Updated PDCE time source to” ‘
 “$($external_clock)”
 }
}
else
{
 # The PDCE is not set for NTP, so set it
 $ret = $objReg.SetStringValue(2147483650,
 “SYSTEM\CurrentControlSet\Services\W32Time\Parameters”,
 “Type”, “NTP”)
 $ret = $objReg.SetStringValue(2147483650,
 “SYSTEM\CurrentControlSet\Services\W32Time\Parameters”,
 “NtpServer”, $external_clock)

 # Restart the time service
 $objTimeSvc = gwmi Win32_Service -Computer $strPDCE ‘
 -Filter “name=‘W32Time’”
 $ret = $objTimeSvc.StopService()
 $ret = $objTimeSvc.StartService()
 Write-Host “PDCE ($($strPDCE)) is now configured to use” ‘
 “$($external_clock) as its time source.”
}

##
Part 2 - Configure every other DC to sync with the domain
time hierarchy
##
Enumerate the Domains in the forest
foreach ($objDomain in $objForest.Domains)
{
 # If this is the root domain
 if ($objDomain.Name.ToLower() -eq
 $objRootDomain.Name.ToLower())
 {
 foreach ($objDC in $objDomain.DomainControllers)
 {
 $strDC = $objDC.Name
 if ($strDC.ToLower() -ne $strPDCE.ToLower())
 {
 $objReg = [WMICLASS]“\\$($strDC)\root\cimv2:StdRegProv”
 $objType = $objReg.GetStringValue(2147483650, “SYSTEM” +
 “\CurrentControlSet\Services\W32Time\Parameters”,
 “Type”)
 # If the DC is not synchronizing with the domain time
 if ($objType.sValue.ToLower() -ne “nt5ds”)
 {
 $ret = $objReg.SetStringValue(2147483650, “SYSTEM” +
 “\CurrentControlSet\Services\W32Time\Parameters”,
 “Type”, “NTP”)
 Write-Host “Updated $($strDC) to use the domain” ‘
 “time hierarchy.”
 # Restart the time service
 $objTimeSvc = gwmi Win32_Service ‘
 -Computer $strDC -Filter “name=‘W32Time’”
 $ret = $objTimeSvc.StopService()
 $ret = $objTimeSvc.StartService()
 }
 }
 }
 }
}

Chapter 6

Administering User and Group Accounts

IN THIS CHAPTER, YOU WILL LEARN TO:
MANAGE USER ACCOUNTS

Add and Remove Users
Maintain User Passwords
Manage User Access
Manage Account Information

MANAGE GROUPS
Add and Remove Groups
Manage Group Settings
Manage Group Membership

Because managing user and group accounts involves frequent and often
repetitive tasks for any Active Directory (AD) administrator, the tasks
described in this chapter are extremely suited for automation using a tool
such as Windows PowerShell. The AD PowerShell module introduced in
Windows Server 2008 R2 includes a number of cmdlets that simplify the
process of user and group management; these cmdlets are all created
using the familiar Add-, Get-, Move-, Set-, and Remove- verb-noun format. For
example, you can use Get-ADUser to retrieve information about one or more
AD user accounts, whereas New-ADGroup, predictably, creates a new group
object in AD. Each cmdlet includes a number of parameters that you can
use to refer to common attributes of user and group objects, such as –
Description to refer to the description LDAP attribute, as well as more
advanced syntax to allow you to access and manipulate any additional
attributes that don't have a parameter associated with them. By using the

examples included in this chapter, you'll be able to automate the critical
tasks associated with managing user and group objects on your AD
network.

Manage User Accounts
Even in small AD domains consisting of a single forest, a single domain,
and even a single site, managing user accounts will be a significant part
of your life as an AD administrator. Without a user account and a
password, no one in your organization will be able to access any network
resources such as file servers or email. It's important to be able to quickly
and efficiently create new user accounts when necessary, to manage
passwords for users who have forgotten theirs or need passwords
changed, and to manage other aspects of information configured on AD
user accounts in any environment that you oversee.

Add and Remove Users
Before a new user in your organization can access any network resources,
such as a file share, email account, or SharePoint document library, an
administrator must create a user account that allows this user to access
these resources. Each user account in AD has a number of attributes
associated with it, the most important of which is probably the security
identifier (SID) used by Windows to assign permissions to this user
object. The SID is a long numeric value that is assigned “under the
covers” when you create a user with a friendly name like Andy Ruth; the
SID doesn't change if you change the user's friendly name. In most cases,
end users aren't aware of the existence of their SID—only their username
and password—but understanding the function of the SID is important in
order for an AD administrator to administer and troubleshoot user-
account access in an AD environment.

AD user objects also possess numerous additional attributes, such as

those corresponding to personal information about the user (first name,
last name, telephone) and attributes that control how the user's password
is configured and whether the account is enabled or disabled.

In this section, you'll learn how to create one or multiple user accounts
within an AD domain, as well as how to configure certain attributes such
as an expiration date for a temporary user account. You'll also learn about
managed service accounts, a feature introduced in Windows Server 2008,
and how to use and manage this new feature.

Creating and Deleting a User Account
Creating and deleting user accounts is one of the most common tasks
you'll perform as an AD administrator, and thus it's suitable for
automation. The PowerShell cmdlet you use to create a user is New-ADUser;
this cmdlet has numerous switches that allow you to configure many
well-known parameters of AD user objects. Here's some example syntax
for the New-ADUser cmdlet:
New-ADUser -SamAccountName “arose” -GivenName “Andy”
-Surname “Rose” -DisplayName “Andy Rose” -Path
‘CN=Users,DC=contoso,DC=com’

The full list of parameters that you can specify in the New-ADUser cmdlet
is as follows:
Name City EmployeeID

AccountExpirationDate Company EmployeeNumber

AccountNotDelegated Country Enabled

AccountPassword Department Fax

AllowReversible PasswordEncryption Description GivenName

CannotChangePassword DisplayName HomeDirectory

Certificates Division HomeDrive

ChangePasswordAtLogon EmailAddress HomePage

HomePhone PasswordNever Expires SmartcardLogon Required

Initials PasswordNot Required State

Instance Path StreetAddress

LogonWorkstations POBox Surname

Manager PostalCode Title

MobilePhone ProfilePath TrustedFor Delegation

Office sAMAccountName Type

OfficePhone ScriptPath UserPrincipalName

Organization Server

OtherName ServicePrincipal Names

If you wish to specify any attributes that aren't available via a defined
switch, you can use the -OtherAttributes switch, which takes a multivalued
argument that allows you to specify multiple attributes (using their LDAP
display name) and their values. Here are some examples of how the –
OtherAttributes switch can specify one or more LDAP values, including the
necessary syntax when one of the attributes is itself multivalued:
-OtherAttributes @{‘shoeSize’=“8.5”}
-OtherAttributes @{‘openProjects’=”ProjectX”,“ProjectY”}
-OtherAttributes @{‘shoeSize’=“8.5”; ‘dateOfBirth’=“
12/10/1973”;‘openProject’=“ProjectX”,“ProjectY”}

Note
Even if an attribute may be specified using an individual switch, you can
still populate its value using the –OtherAttributes switch. This may come in
handy if you're populating information from an import file or database. (The
sAMAccountName switch is mandatory for all user objects created with New-ADUser.)

Listing 6.1 shows a few different combinations of syntaxes.

Listing 6.1: Creating New Active Directory User Accounts

New-ADUser -sAMAccountName “arose” -GivenName “Andy” -Surname
“Rose” -DisplayName “Andy Rose” -Path ‘CN=Users,DC=contoso,DC=com’
–AccountExpirationDate “10/25/2012”

New-ADUser -SamAccountName “arose” -GivenName “Andy” -Surname
“Rose” -DisplayName “Andy Rose” -Path ‘CN=Users,DC=contoso,DC=com’
–AccountExpirationDate “10/25/2012” –EmployeeNumber “225373”
-Enabled $false

New-ADUser -SamAccountName “arose” -GivenName “Andy” -Surname
“Rose” -DisplayName “Andy Rose” -Path ‘CN=Users,DC=contoso,DC=com’
–AccountExpirationDate “10/25/2012” –EmployeeNumber “225373”
-Enabled $false

New-ADUser –Name arose –Path ‘CN=Users,DC=contoso,DC=com’
–OtherAttributes @{givenName=“Andy”;surName=“Rose”;employeeNumber=
“225373”;title=“Director”}

Just as you use New-ADUser to create AD user objects, you use Remove-ADUser

to delete them. You can specify an individual user to delete by using the –
Identity switch, which may take any of the following values as a way to
identify the user in question:

Distinguished Name (DN)
sAMAccountName

Globally Unique Identifier (GUID)
SID

You can also perform a search of AD for user objects that meet certain
criteria, and then pipe the results of the search to Remove-ADUser in order to
remove all users in the result set. The following is an example of both of
these syntaxes: (Notice that the second command uses the -Confirm switch
to prompt the user before each deletion.)
Remove-ADUser –Identity “CN=Andy Ruth,OU=Marketing,DC=Contoso,DC=COM”
Search-ADAccount -AccountDisabled | where {$_.ObjectClass -eq
‘user’} | Remove-ADUser -Confirm

Creating Several Users from a CSV File
Another common task is creating a large number of users based on
information in an input file such as a comma-separated values (CSV) file.
In this case, the Import-CSV cmdlet makes the process relatively
straightforward. With Import-CSV, you can assign a name to each field in the
CSV file on the basis of the header row in the file and then pipe that
information, using ForEach-Object to invoke New-ADUser for each entry in the
CSV file.

The following example shows a CSV file you can use to create a large
number of users and the PowerShell cmdlet that reads the input file and
creates the corresponding user objects:
sAMAccountName,Path,GivenName,Surname,DisplayName,EmployeeNumber
arose,“CN=Users,DC=Contoso,DC=Com,”,Andy,Ruth,“Andy Ruth”,123456
mabx,“OU=Marketing,DC=Contoso,DC=Com”,Max,Benson,“Max
Benson”,234567
Import-CSV “users.csv” | Foreach-Object {New-ADUser –Name
$_.sAMAccountNAme –Path $_.Path –GivenName $_.GivenName –SurName
$_.SurName –DisplayName $_.DisplayName –OtherAttributes @
{employeeNumber=$_.EmployeeNumber}

Changing the Default Location for User Accounts
To maintain backward compatibility with pre–Windows 2000
environments, each AD domain is installed containing two container
objects called CN=Users,<domain DN> and CN=Computers,<domain DN>. By default, all
user objects that are created are placed in the Users container, and all
computer objects are placed in the Computers container. Within AD, the
container object class is a parent of the organizational unit (OU) object
class—container objects may contain other objects similar to OUs; but
unlike OUs, you can't link Group Policy Objects (GPOs) to containers.

To ensure that all newly created user objects receive the correct
security and GPO settings from the moment they're created, you can
redirect the default location where new user objects are created. This
change requires that the domain in question be operating at the Windows
Server 2003 domain functional level or higher. The simplest way to make
this change is to use the built-in redirusr.exe utility.

Note
The Users and Computers containers may be renamed by an AD administrator,
but they may not be deleted.

The following example shows the syntax required to redirect the default
location for newly created user objects to the DefaultUsers organizational
unit:
Redirusr.exe OU=DefaultUsers,DC=Contoso,DC=Com

Creating a Managed Service Account
One of the largest challenges of managing AD-aware applications is the
need to create and manage application service accounts over time—in
particular, the difficulty of configuring and updating the passwords for

these service accounts over time. Administrators are often forced to
configure service accounts with non-expiring passwords to avoid
application outages. Doing so can create significant security exposure on
a network, because service accounts often have highly elevated
permissions; but the alternative is to incur application outages resulting
from service-account passwords expiring without warning.

To help address this issue, Windows Server 2008 R2 introduces the
concept of the managed service account (MSA), a new object class that
inherits from both the computer and user object classes. Unlike
traditional service accounts, for which account passwords must be set and
managed manually, MSAs have a 240-character random password that is
automatically created by AD and that changes every 30 days by default.
By default, all MSAs in the contoso.com domain would be created in the
following container: CN=Managed Service Accounts, DC=contoso,DC=com.

Warning
An MSA may be used on only one computer object at a time. And if you're running
at the Windows Server 2008 R2 domain functional level, MSAs can automatically
maintain any service principal names (SPNs) that are associated with the MSA if the
MSA is renamed at any point. (The downside to the fact that you can associate an
MSA with only a single computer object is that MSAs may not be used to run
applications in clustered environments.) MSAs can only be configured on computers
that are running Windows Server 2008 R2 or Windows 7.

Deploying a new MSA involves four steps:
1. Create the MSA.
2. Associate the MSA with a computer account.
3. Install the MSA on the computer that was associated.
4. Configure the service(s) to use the MSA.

The following demonstrates how to perform the first two of these steps,
from a domain controller (DC) or a client computer:

New-ADServiceAccount –Name SAPServiceAccount
Add-ADComputerServiceAccount –Identity CN=SAPServer,OU=Servers,
CN=Contoso,CN=COM –ServiceAccount SAPServiceAccount

After you've created the MSA and associated it with the computer
account you want, you're left with installing it on the computer, as shown
in the following example. In order to perform this portion of the process,
you must be a local administrator on the computer and you need the
ability to modify the properties of the MSA object:
Install-ADServiceAccount –Identity SAPServiceAccount

Finally, you need to change the properties of the service to log on as the
MSA. You can see the syntax required for this in the following code
(notice that it sets the password to $null):
$account=“Contoso\SAPServiceAccount”
$password=$null
$svc=gwmi win32_service -filter “name=‘SAP Service’”
$inParams = $svc.psbase.getMethodParameters(“Change”)
$inParams[“StartName”] = $account
$inParams[“StartPassword”] = $password
$svc.invokeMethod(“Change”,$inParams,$null)

Finally, this last code example shows the two commands necessary to
remove an MSA. You disassociate the MSA from the computer account
and remove it from AD.
Remove-ADComputerServiceAccount –Identity SAPServer
–ServiceAccount SAPServiceAccount
Remove-ADServiceAccount –Identity SAPServiceAccount

Preventing a User from Being Accidentally Deleted
An oft-recurring challenge for AD administrators, particularly when
working within GUI tools like Active Directory Users and Computers, is
recovering from accidentally deleting one or more objects. This error is
often caused by the proverbial “fat finger,” where an administrator is
trying to select one object and ends up selecting a different object (or
even a different container or OU). To help prevent this, Windows Server
2008 introduced the Protect Object From Accidental Deletion check box
in Active Directory Users and Computers. This protection prevents an
administrator from deleting an object without first removing this

protection; in the UI, you do so by selecting the check box. This
protection is enabled by default on all new OUs created in Windows
Server 2008 and higher, but it may be configured on any object in the
domain—even leaf objects like users and groups. Because this protection
simply applies a Deny Delete and Deny Delete Subtree Access Control
List (ACL) on the object to the EVERYONE group, applying this
protection can also be automated at the command line.

The following shows how to protect an individual user from accidental
deletion using the dsacls.exe utility:
Dsacls “cn=Andy Ruth,ou=Users,dc=contoso,dc=com” /d EVERYONE:SDDT

Setting the Expiration Date of a User Account
In some cases, you may need to configure a user account that has a finite
lifetime during which the user is permitted to log in. This is a common
scenario for vendor accounts and temporary or contingent staff who are
fulfilling the terms of a time-based contract. You can use the Set-ADUser
PowerShell cmdlet to set a user's expiration date, as shown in this code:
Set-ADUser –Identity “CN=Andy Ruth,OU=Users,DC=Contoso,DC=Com”
–AccountExpirationDate 12/10/2011

Maintain User Passwords
In almost every AD domain, each user account that you create will have a
password associated with it that the user must enter whenever they wish
to log onto their workstation or access a resource from a non-domain-
joined machine. (After the user logs onto a domain-joined workstation,
they aren't prompted to re-enter their password to access any resource
that relies on Integrated Windows Authentication to provide single sign-
on.) In this section, you'll learn how to perform a number of common
tasks related to managing user passwords, including changing or resetting
a user's password, flagging a user to change their password the next time
they log onto the network, and notifying users whose passwords are close
to their expiration date using a simple email notification.

Determining Which Users' Passwords Have
Replicated to an RODC
The computer account of each read-only domain controller (RODC)
possesses a number of attributes that control how AD user and computer
account passwords are replicated to that RODC. The attributes you'll find
on the RODC's computer object are as follows:

msDS-Reveal-OnDemandGroup This attribute corresponds to the Allowed List
option for each RODC. Each member of the allowed list (user,
computer, or group) may have their passwords replicated to the
RODC. This doesn't necessarily mean that the passwords have already
been replicated there, merely that the passwords are permitted to
replicate there.
msDS-NeverRevealGroup This attribute is the converse of msDS-Reveal-
OnDemandGroup and corresponds to the Denied List option for each RODC.
This list corresponds to users, computers, and groups whose
passwords will never be replicated to this RODC. (This doesn't impact
the ability of these security principals to authenticate using the
RODC; it simply means that any requests are forwarded to a writeable
DC.) A default list of security principals whose credentials are denied
replication to the RODC is configured on each new RODC in a
domain and consists of high-security groups such as Domain Admins,
Enterprise Admins, and Schema Admins.
msDS-RevealedList This attribute is a list of user and computer accounts
whose current passwords have been replicated to this RODC.
msDS-AuthenticatedToAccountList This is a list of user and computer
accounts that have authenticated to the RODC, although their
passwords may or may not be included in the RevealedList.
Administrators can use this attribute to help refine the Password
Replication Policy for an RODC by determining which users and
computers are authenticating frequently to a particular RODC.

The next example shows you how to query for the contents of the

RevealedList attribute for a particular RODC, to determine which users and
computers are using this RODC to authenticate:
Get-ADComputer –Identity “CN=RODC1,OU=Domain
Controllers,DC=Contoso,DC=COM” –Properties msDS-RevealedList

And the following code shows you how to query for all RODCs in a
domain and obtain this information for each one:
Get-ADDomainController -Server “research.fabrikam.com”
-Filter { isReadOnly -eq $true } | Get-ADComputer –Properties
msDS-RevealedList

Finding Accounts Whose Passwords Will Expire
Soon
A common request for AD administrators is to obtain a list of user
accounts whose passwords are about to expire. In Windows PowerShell,
you can query this using the Search-ADAccount cmdlet with the –AccountExpiring
parameter. The following example uses the DateTime function in
PowerShell to obtain a list of users whose passwords will expire within
the next 90 days:
Search-ADAccount -AccountExpiring -TimeSpan 90.00:00:00

Changing the Password of a User Account
Although it seems like a simple matter, changing a user's AD password
has a number of subtleties that must be considered before you perform
the operation. The first question to ask is whether the user knows their
current password, which will allow them to change the password, or if the
user has lost or forgotten their current password, which will require an
administrator to reset the password. If a user resets their password, it has
several implications for their local desktop, including losing access to
files that they have encrypted using the Encrypting File System (EFS)
unless they previously created a password-reset disk.

The simplest mechanism for changing or resetting a user's password is
to use the Set-ADAccountPassword cmdlet and allow it to prompt you to enter

the old and/or new passwords. This code shows the cmdlet in action,
followed by the output you see from the cmdlet:
Set-ADPassword –Identity “CN=Andy Ruth,OU=Users,DC=Contoso,DC=Com”

Please enter the current password for ‘CN=Sara Davis,CN=Users,
DC=Fabrikam,DC=com’
Password:**********
Please enter the desired password for ‘CN=Sara Davis,CN=Users,
DC=Fabrikam,DC=com’
Password:***********
Repeat Password:***********

If you need to specify the old or new password at the same time you
enter the cmdlet, you'll need to use the ConvertTo-SecureString method to
convert the plain text of the password, because the Set-ADAccountPassword
cmdlet requires a secure string as input. This code line demonstrates this
option:
Set-ADAccountPassword -Identity arose -OldPassword (ConvertTo
-SecureString -AsPlainText “p@ssw0rd” -Force) -NewPassword
(ConvertTo-SecureString -AsPlainText “qwert@12345” -Force)

Finally, the following example shows how to reset a user's password if
the user has forgotten it or if you don't have the user's current password
available:
Set-ADAccountPassword ‘CN=Andy Rose,OU=Users,DC=Fabrikam,DC=
com’ -Reset -NewPassword (ConvertTo-SecureString -AsPlainText
“p@ssw0rd” -Force)

Forcing a User to Change Their Password at Next
Logon
In the next snippet, you can see how to use the Set-ADUser cmdlet to force a
user to change their password the next time they log onto their
workstation. This function assumes that the user knows their current
password; if they don't, you'll need to reset their password before setting
this option:
Set-ADAccountPassword ‘CN=Andy Rose,OU=Users,DC=Fabrikam,DC=com’
–ChangePasswordAtLogon $true

Emailing Users When Their Passwords Are About

to Expire
Automating the process of emailing user notifications has a number of
moving parts, as you might imagine. In this code, you can see an example
of this functionality in action:
Search-ADAccount -AccountExpiring -TimeSpan 7.00:00:00 | foreach {
 $UserName=$_.GivenName
 $EmailAddress=$_.EmailAddress
 $MyVariable = @“Dear $UserName: Your password will expire in
$display days.”@
send-mailmessage -to $EmailAddress -from NoReply@domain.test
-Subject “IT Information: Your password will expire in $display
days” -body $MyVariable -smtpserver smtp.contoso.com
}

To send the mail message, this script relies on the send-mailmessage
PowerShell cmdlet, which lets you specify common parameters
associated with sending an email message:

To specifies the email recipient
From specifies the Reply-To address
Subject specifies the Subject line of the email
Body specifies the body of the email
Smtpserver specifies the mail server that will be used to transmit the
messages

Manage User Access
Each user account that you create in an AD domain receives certain
default privileges to resources on your network: for example, resources
that have been secured to the Domain Users and Authenticated Users
groups, of which each user is automatically made a member. Because of
this, it's important to manage user access to your environment over time
as users enter and leave your organization. Using attributes on the user
account, you can determine the last time a user account was used to
access the network; if it hasn't been used for a significant amount of time,
this may indicate that the user has left the organization and the account is
no longer required.

In this section, you'll learn how to search for unused accounts and
enable or disable them if desired. You'll also learn additional
mechanisms for controlling a user's access to an AD environment, such as
requiring a user to use a smart card for two-factor authentication in high-
security environments, or restricting a user account to only be able to log
on from specific workstations that you have identified. Finally, you'll
learn how to search for and manage accounts that have been locked out
due to repeated failed attempts to enter the correct password associated
with the account.

Unlocking a User Account
Many AD environments implement an account-lockout policy, which
locks out a user's account if the user enters an incorrect password a
certain number of times within a specified time frame—5 bad login
attempts within 45 minutes, for example. Depending on how the account-
lockout policy is configured, users' accounts may automatically unlock
themselves after a specific duration, or users may be required to have an
administrator unlock their accounts manually. In either case,
administrators can unlock user accounts from the command line using the
Unlock-ADAccount PowerShell cmdlet.

As with many AD PowerShell cmdlets, a mandatory parameter of this
cmdlet is –Identity, which specifies the user account that should be
unlocked. Unlock-ADAccount may consume a user identity presented in any of
the following formats:

GUID
SID
DN
sAMAccountName

This code demonstrates how to unlock an AD user account:
Unlock-ADAccount –Identity “cn=Andy Ruth,ou=Users,dc=contoso,dc=com”

Finding User Accounts That Haven't Logged On in
30 Days
A common AD administration task is to identify user accounts that
haven't logged onto AD within a specified period of time, in order to
disable or delete these users and thus prevent unauthorized use of those
accounts by terminated or resigned employees. The AD PowerShell
cmdlets in Windows Server 2008 R2 make it easy to search for users in
this category with the Search-ADAccount cmdlet using the –AccountInactive

switch. You can search for accounts that haven't logged onto AD within
the past X number of days (“users who haven't logged on in the last 90
days”), or you can specify a particular date to search against (“users who
haven't logged on since January 1, 2009.”)

This code shows an example of each type of search:
Search-ADAccount -AccountInactive -TimeSpan 30.00:00:00 | where
{$_.ObjectClass -eq ‘user’}
Search-ADAccount –AccountInactive –DateTime 01/01/2009 | where
{$_.ObjectClass –eq ‘user’}

Note
Because you're specifically searching for user objects, instead of computer
objects or inetOrgPerson objects, you use a where clause to filter the output of the
Search-ADAccount command.

To provide a common example of piping the output of one cmdlet into
another, the following code shows how to search for inactive accounts
and then disable them within the same command:
Search-ADAccount -AccountInactive -TimeSpan 30.00:00:00 | where
{$_.ObjectClass -eq ‘user’} | Disable-ADAccount

Enabling and Disabling a User Account
From time to time, you may need to disable an AD user account rather

than delete it outright. A user may be taking a temporary but extended
leave of absence from the company, or a vendor may have completed
work on a specific contract but expects to return on another contract in a
few weeks. By disabling an account instead of deleting it, you may
reenable the account later and allow it to maintain all of its old attributes,
such as security group memberships, without needing to restore the
account from a backup.

The following example shows how to disable and enable a specific user
account using the Disable-ADAccount and Enable-ADAccount cmdlets, respectively.
Like other cmdlets we've discussed, these two require the –Identity
parameter to identify the account to be enabled or disabled; this may take
the form of a DN, GUID, SID, or sAMAccountName:
Enable-ADAccount –Identity “dn=maxb,ou=Users,dc=contoso,dc=com”
Disable-ADAccount –Identity arose

Searching for Disabled User Accounts
Similar to other common searches, you can use the Search-ADAccount cmdlet
to search for a list of disabled user accounts in AD. Because Search-
ADAccount searches for user, computer, and service accounts, you use a where
clause to filter the results of the search operation. You can also use the –
SearchScope parameter to search only for disabled user accounts within a
particular OU in AD:
Search-ADAccount –SearchBase “ou=Active Users,dc=contoso,dc=com”
-AccountDisabled | where {$_.ObjectClass -eq ‘user’}

Determining the Last Time a User Logged On
Because AD is a distributed system, where information may be updated
on a number of DCs throughout the environment, determining the last
time that a user logged on is a more complicated question than it may
appear on the surface. Each user object possesses an attribute called
lastLogon, which is updated with the current timestamp each time a user
authenticates to a writeable DC. This attribute doesn't replicate between

DCs, so if a user authenticates against DC1 today and then authenticates
against DC2 tomorrow, the lastLogon attribute will have a different value
depending on which DC you're querying. This created challenges in
determining a user's most recent logon time in Windows 2000, because it
requires you to query every single DC in a domain and compare the
values of this attribute to determine the most recent timestamp.

Beginning in Windows Server 2003, the lastLogonTimestamp attribute was
introduced. It creates a timestamp that is replicated between DCs; but in
order to reduce the amount of replication traffic within a domain, this
attribute isn't replicated every single time a user logs on—the
lastLogonTimestamp attribute is accurate within approximately 7 days by
default. It creates an easier mechanism for determining a user's last logon
time, but at the expense of 100 percent accuracy.

You can query for a user's lastLogonTimestamp in PowerShell by using Get-
ADUser and searching for the LastLogonDate property. LastLogonDate is calculated
from the value of the lastLogonTimestamp parameter; the value of
lastLogonTimestamp is translated into the corresponding date in your local
time zone. (If the user doesn't have a value set for lastLogonTimestamp, the
result of the –LastLogonDate property will be blank.)

This line shows you how to determine the last logon date for a specific
AD user account:
Get-ADUser –Identity arose –Properties “LastLogonDate”

Forcing a User to Log Onto Only One Computer at
a Time
A common request among AD administrators is for the ability to force
users to only log onto a single workstation, or to a group of designated
workstations. In AD, the only way to enforce this limitation is to specify
a list of computer names (using the short NetBIOS name or the fully
qualified DNS domain name [FQDN]) that each user may log onto. You
can automate this process by using the Set-ADUser cmdlet along with the –

LogonWorkstations parameter, as shown here:
Set-ADUser –Identity arose –LogonWorkstations
“aroseDesktop,aroseLaptop.contoso.com,terminalserver1.contoso.com”

Getting a List of All Users Who Are Locked Out
Similar to searching for a list of disabled or inactive users, the Search-
ADAccount PowerShell cmdlet provides an easy way to search for user
accounts in an AD domain that have been locked out due to violations of
the domain's account-lockout policy. This code demonstrates how to use
the Search-ADAccount cmdlet in this manner, using a where clause to filter the
results of the search to include only user objects:
Search-ADAccount -LockedOut | where {$_.ObjectClass -eq ‘user’}

Requiring a User to Log On With a Smart Card
If you've deployed a Public Key Infrastructure (PKI) on your network,
you may choose to deploy smart cards for some or all of your users.
Doing so increases the security of users authenticating to your AD
domain by enabling the use of two-factor authentication: logging onto
AD will require something you have (the smart card inserted into the
smart card reader) and something you know (the smart card PIN entered
when prompted). In high-security environments, you may require smart-
card logons for all user accounts, or you may only require smart-card
logon for specific user accounts, such as elevated administrator accounts
in the Domain Admins and Enterprise Admins groups.

To further protect the security of a user account, you can configure an
account to require smart-card authentication: If a user attempts to log on
using a username and password only, the logon will fail. You can
configure this at the command line using the Set-ADUser cmdlet, as shown
here:
Set-ADUser –Identity “cn=arose,ou=Users,dc=contoso,dc=com”
–SmartCardLogonRequired $true

Manage Account Information
In our final section on managing user accounts in AD, we'll discuss a
number of tasks that haven't been covered in previous lessons. The Set-
ADUser cmdlet allows you to modify one or more attributes on a single user
or on multiple users simultaneously. You'll also learn how to determine
which group objects a particular user belongs to, as well as how to
convert the friendly name of an AD user account to and from its
corresponding SID.

Modifying Basic Information About a User
You can use the Set-ADUser cmdlet to modify any properties of an AD user
account. A number of commonly accessed properties are included as
named parameters of the Set-ADUser cmdlet; you can also manually specify
any property that doesn't have an explicit parameter associated with it.
You have already seen individual examples of parameters used in
association with the Set-ADUser cmdlet; here is the full list of available
parameters:
AccountExpiration Date CannotChange Password City

AccountNotDelegated Certificates Company

AllowReversible PasswordEncryption ChangePassword AtLogon Country

Department HomePhone ProfilePath

Description Initials SamAccountName

DisplayName LogonWorkstations ScriptPath

Division Manager ServicePrincipal Names

EmailAddress MobilePhone SmartcardLogon Required

EmployeeID Office State

EmployeeNumber OfficePhone StreetAddress

Enabled Organization Surname

Fax OtherName Title

GivenName PasswordNever Expires TrustedFor Delegation

HomeDirectory PasswordNot Required UserPrincipal Name

HomeDrive POBox

HomePage PostalCode

Many of these parameters simply take a string as their value: for
example, -Title “Manager” or –Surname “Ruth”. In some cases, the attribute is a
boolean that requires a value of $true or $false: -TrustedForDelegation $true or –
Enabled $false. You can specify the user to be modified using the –Identity

parameter, providing a GUID, SID, DN or sAMAccountName; or you can use the
Get-ADUser cmdlet to search for the required user and then pipe the results
into Set-ADUser.

The next block shows a few examples of how to modify user settings
with the Set-ADUser cmdlet:
Set-ADUser –Identity “cn=arose,ou=Users,dc=contoso,dc=com”
–SmartCardLogonRequired $true
Get-ADUser arose | Set-ADUser –Description “Manager of Training”
Get-ADUser –Identity S-1-5-1234-13454565-2479453 | Set-ADUser
$_ -DisplayName ($_.Surname + ‘ ‘ + $_.GivenName)

To modify attributes that don't have named parameters associated with
them, you can use the -Add, -Clear, -Replace, and -Remove parameters. You can
specify multiple properties at a time by separating them by semicolons,
and you can separate individual values within a single multivalued
attribute by separating them with commas. This code shows some
examples of this syntax:
Set-ADUser –Identity “cn=arose,ou=Users,dc=contoso,dc=com”
–Add @{otherTelephone=‘555-222-1111’, ‘555-222-3333’;
otherMobile=‘555-222-9999’}
Set-ADUser –Identity “cn=arose,ou=Users,dc=contoso,dc=com”
–Clear description
Set-ADUser –Identity arose -Replace @
{otherTelephone=‘555-222-2222’, ‘555-222-1111’} # This removes
555-222-2222 in the otherTelephone attribute and adds 555-222-
1111 in its place
Set-ADUser arose -Remove @{otherMailbox=“andy.rose”}

Note
The difference between –Clear and –Remove is that –Clear completely removes all
data within an attribute. You can use –Remove to remove a single value from a
multivalued attribute, such as removing a single phone number without aff
ecting other items in the list.

Determining What Groups a User Belongs To
Determining which groups a user belongs to can be a simple or a complex

operation, depending on the configuration of your AD environment. This
is because AD has three different group scopes:

Global and universal groups are visible from any domain in a
multidomain forest.
Domain local groups are only visible from DCs within the domain
that contains the group, but the groups may contain users from
remote domains.

T h e Get-ADPrincipalGroupMembership cmdlet obtains the AD group
membership for a particular user, computer, or service account, or even
the nested group membership of another group. If your environment
contains only a single domain, the syntax of this cmdlet is relatively
straightforward. If you need to retrieve a user's group memberships in
domain local groups in other domains, you must specify a DC in the
remote domain using the –ResourceContextServer and –ResourceContextPartition
parameters, so these domain local groups may be queried.

Note
This cmdlet must target a global catalog server in order to perform the
search.

The following code demonstrates the syntax of the Get-
ADPrincipalGroupMembership cmdlet; you may specify the identity to be queried
using a GUID, an SID, a DN, or a sAMAccountName. You can also search for
the desired user with the Get-ADUser cmdlet and pipe the results of the
search to the Get-ADPrincipalGroupMembership cmdlet. This example queries for
the group memberships of a user in the adatum.com domain, specifying a DC
in the emea.adatum.com child domain to check for any group memberships
that the user may have within that child domain:
Get-ADPrincipalGroupMembership –Identity “cn=arose,ou=Users,
dc=adatum,dc=com” –ResourceContextServer dc1.emea.adatum.com
–ResourceContextPartition “dc=emea,dc=adatum,dc=com”

Cleaning Up SIDHistory
As a convenience measure during AD migrations, AD security principals
also possess an attribute called sidHistory, which allows migrated user
objects to retain records of any old SIDs they once possessed. This lets a
migrated object continue to access a resource that used its premigration
SID in an ACL. If a user attempts to access a resource with their new SID
and is denied access, for example, Windows checks the sidHistory attribute
to determine if any previous SIDs are listed in the ACL that allow or deny
access.

When a migration has been completed and the old domain
decommissioned, it's a best practice to clear the sidHistory attribute of all
migrated user accounts. Because sidHistory is retained as an attribute of
each AD user account, you can use the Set-ADUser cmdlet to clear this
attribute, as shown here:
Set-ADUser arose –Clear @{sidHistory}

Limiting How Many Objects a User Can Create
A potential risk of delegating permissions to non-administrators is the
possibility that a user may create a large number of objects in AD,
potentially creating a denial-of-service attack against a DC by filling up
the available space on the disk drive containing the NTDS.DIT file. You can
help to minimize this risk by establishing one or more quotas in AD. You
can establish a default quota for a particular naming context, as well as
individual quotas for one or more users or groups.

Quotas are applied on the basis of how many objects a particular user
owns: If a user exceeds their quota, you can transfer ownership of one or
more objects to another user, such as an administrator, so the user may
create more objects. Tombstoned objects apply against a user's quota at a
reduced rate—by default, a tombstoned object is given one fourth the
weight of a live object. When configuring the default quota for a
partition, you must also specify the weight of tombstoned objects.

Tip
Domain Admins and Enterprise Admins aren't subject to AD quotas, and quotas
may not be applied to the schema naming context.

The next example demonstrates how to establish quotas for individual
users and groups using the dsadd.exe command-line utility, and how to
modify the default quota for a particular naming context by using
dsmod.exe. This example establishes a default quota limit of 100 users in
which each tombstoned object counts as one tenth of a live object, and an
individual quota for arose of 1000 users.
dsmod.exe partition dc=adatum,dc=com –qdefault 100 –qtmbstnwt 10
dsadd.exe –quota –part dc=adatum,dc=com –acct cn=arose,ou=users,
dc=contoso,dc=com –qlimit 1000

Converting an SID to an Account Name
Each AD security principal has a numeric SID associated with it; this SID
remains the same even if an object is renamed. Because all Windows
permissions (AD, file system, and so on) are based on SIDs, the
persistence of the SID allows administrators to rename an object without
needing to completely reassign the user's permissions across the
environment.

In Windows PowerShell, you can take an object's SID and convert it to
the user's sAMAccountName, and vice versa. Because there are no built-in
cmdlets that perform this functionality, you use native .NET calls to
perform this task, as shown next. Here's how you convert an SID to an
account name:
$objSID = New-Object System.Security.Principal.SecurityIdentifier
(“S-1-5-21-1556476127-1285835555-1973985555-1210”)
$objUser = $objSID.Translate([System.Security.Principal
.NTAccount])
$objUser.Value

And here's how you convert an account name to an SID:

$objUser = New-Object System.Security.Principal
.NTAccount(“contoso”, “arose”)
$strSID = $objUser.Translate([System.Security.Principal
.SecurityIdentifier])
$strSID.Value

Changing a Property on Several Users
Simultaneously
So far in this chapter, you have seen examples of how to use Set-ADUser to
modify a single user at a time, specifying the user to be modified with the
–Identity parameter. You can also use PowerShell's piping functionality to
modify many objects at once, by searching for those objects with Get-
ADUser or Search-ADAccount and then using the | operator to use those search
results as the input for Set-ADUser. You can also use PowerShell's native
capabilities to read a text file containing a list of users and then take an
action based on each line of that file.

This code shows how to modify multiple users on the basis of a Get-
ADUser search:
Get-ADUser –SearchBase ‘OU=Sales,OU=Users,DC=contoso,DC=com’
| foreach {Set-ADUser -description “Sales”}
Get-ADUser -LDAPFilter “(department=‘Sales’)” | foreach
{Set-ADUser -Add @{costCenter=‘1010’}

This code demonstrates how to loop through a text file containing one
username per line:
Get-Content c:\scripts\usernames.txt | foreach {Set-ADUser
–Enabled $false}

Manage Groups
To ease the administrative burden of assigning permissions to resources
on a network, an administrator can create group objects that contain one
or more AD security principals: users, computers, MSAs, and group
objects nested within other groups. In this way, an administrator can
assign resource permissions to a group object, and those permissions will
be assigned to each security principal in that group, rather than the

administrator having to assign permissions to individual security
principals one at a time. To provide flexibility across different
environments, AD includes a number of different configuration options
for group objects, including the type of group (distribution or security) as
well as the scope of the group (domain local, global, or universal.)

In this section, you'll see in action the Windows Server 2008 R2
PowerShell cmdlets that let you automate repetitive tasks associated with
group objects: creating and deleting groups, managing the configuration
of group objects, and managing the membership of a group object within
an AD domain.

Add and Remove Groups
This section describes some of the fundamental tasks required to
automate the management of group objects in AD. You'll begin by
creating and deleting group objects of various scopes and types, and then
you'll use the Get-ADGroup cmdlet to obtain a list of all groups within a
domain. You'll also learn how to move a group object from one AD OU to
another, as well as how to gather the membership of an AD group and
record that information in a text file for reporting or troubleshooting
purposes.

Creating and Deleting Distribution Groups
AD specifies two different types of group objects: distribution groups and
security groups. Distribution groups may be used in conjunction with an
AD-integrated email platform, such as Microsoft Exchange, to send email
to multiple users at a time. You can also use security groups to send
emails to the users belonging to the group, but security groups also let
you assign permissions within AD, the Windows file system, and the like.

The New-ADGroup PowerShell cmdlet allows you to easily automate the
creation of AD group objects, with named parameters corresponding to
common attributes of a group object:

Name

GroupScope—DomainLocal or 0, Global or 1, Universal or 2
Description

DisplayName

GroupCategory—Distribution or 0, Security or 1
HomePage

ManagedBy

OtherAttributes—Uses the format –OtherAttributes @{“attribute”=“value”}.
Separate attributes are separated by semicolons. Individual values in a
multivalued attribute are separated by commas, such as OtherAttributes
@{‘projects’=“Project1”,“Project2”; ‘dateOfBirth’=“ 12/10/1973”}.
Path—OU in which the group will be created
samAccountName

The next code block demonstrates how to create a distribution group
using New-ADGroup and then delete that group using Remove-ADGroup. When
you're deleting a group using Remove-ADGroup, you must specify the identity
of the group to be removed; you can do so using a DN, a GUID, an SID,
or sAMAccountName:
New-ADGroup –Path “ou=Sales,dc=contoso,dc=com” –name “Sales
Users” –GroupScope Universal –GroupCategory Distribution
–DisplayName “Sales Users” –ManagedBy “cn=Andy Ruth,ou=Users,
dc=contoso,dc=com”
Remove-ADGroup –Identity “cn=Sales Users,ou=Sales,dc=contoso,dc=com”

Creating and Deleting Security Groups
You can use the New-ADGroup cmdlet to create an AD security group as well
as a distribution group. Security groups may be used as a single point of
administration to assign permissions to all users who are members of that
group. Security groups may also be used for purposes of sending email,
whereas a distribution group can't be used to assign permissions.

In this code, you see how to create and delete a security group using
PowerShell:
New-ADGroup –Path “ou=Sales,dc=contoso,dc=com” –name “Sales

Users” –GroupScope Global –GroupCategory Security –DisplayName
“Sales Users” –ManagedBy “cn=Andy Ruth,ou=Users,dc=contoso,
dc=com” –samAccountName SalesUsers
Remove-ADGroup –Identity SalesUsers

Gathering a List of All Groups and Their
Designated Managers
Similar to using Get-ADUser to search for AD users who meet certain
criteria, you can use Get-ADGroup to search for group objects, and to return
the group and one or more properties of the group object. One such
property is the managedBy attribute, which specifies the DN of the user who
is responsible for administration of the group. The following code
retrieves all group objects in the current domain and outputs the name of
the group along with the DN contained in its managedBy attribute:
Get-ADGroup –Filter * -Properties Name, ManagedBy | Format-Table
Name, ManagedBy

The next code line restricts the output of the Get-ADGroup search operation
to include only universal security groups:
Get-ADGroup –Filter ‘GroupCategory -eq “Security” -and
GroupScope -eq “Universal”’ -Properties Name, ManagedBy |
Format-Table Name, ManagedBy

Moving a Group to Another Organizational Unit
You can use OUs in AD to group objects together for the purpose of
delegating administration and applying GPOs to users and computers. As
you administer an AD environment over time, you'll probably find it
necessary to move objects from one OU into another. When you do so,
the objects automatically inherit all the security and GPO settings of the
new OU, such as one or more delegated administrators who have
permissions over objects within only one specific OU or another.

You use the Move-ADObject cmdlet to move a group object from one OU to
another within a single domain; but you can use this cmdlet to move
almost any other object type in AD, including user objects, computer
objects, and contact objects. (If you wish to move a DC into another OU,

use the Move-ADDirectoryServer cmdlet instead.) You can specify the identity
of the object to be moved as either the object's DN or its GUID:
Move-ADObject -Identity “CN=SalesAdmins,OU=Sales,DC=Contoso
,DC=Com” -TargetPath “OU=Groups,DC=Contoso,DC=Com” -server
“FABRIKAM-SRV1:60000”

Note
If you wish to delegate the ability to move an object in AD, you must
delegate the ability to delete objects on the source OU and the ability to
create objects in the destination OU. (You can further restrict this permission
by object type if desired, delegating the ability to create and delete only
group objects or only user objects, for example.)

Dumping Every Group and Its Membership to a
File
Whether for reporting or troubleshooting purposes, it's often useful to be
able to record the membership of an AD group object into a text file for
later viewing or analysis. The next code example uses the Get-ADGroup
cmdlet to retrieve every group object within the domain and then pipe the
output of that cmdlet to the Get-ADGroupMember cmdlet for processing. (When
you specify the –Recursive switch for Get-ADGroupMember, PowerShell also
records the membership of any nested groups within the specified group;
if you omit –Recursive, you'll only see the direct members of the group as
output.)
Get-ADGroup –Filter * | Foreach { Get-ADGroupMember –Recursive |
Out-File –FilePath c:\groupmembers.txt –Append }

In a more advanced example of the PowerShell pipeline, you can then
take that result and pipe it one more time to the Out-File cmdlet to record
the group membership information to a text file. (If your AD
environment is very large, this sequence of cmdlets may take a very long
time to run. You may wish to restrict the output of the Get-ADGroup cmdlet

to a specific OU or to a specific scope or type of group, for example.)

Manage Group Settings
This section will demonstrate how to perform and automate a number of
tasks relating to AD group objects. As you do with user objects, you may
use the dsacls.exe command to protect one or more group objects from
accidental deletion. You can also use Windows Server 2008 R2 cmdlets
to designate a manager of a group, change the scope or type of the group,
and view all configured information about one or more group objects.

Preventing a Group from Being Deleted
Accidentally
Similar to user objects, as an AD administrator you may wish to protect
certain group objects from being accidentally deleted by yourself or by
other administrators. To help prevent this, Windows Server 2008
introduced the Protect Object From Accidental Deletion check box in AD
Users and Computers, as shown in Figure 6.1.

Figure 6.1 Protecting objects from accidental deletion

This protection prevents an administrator from deleting an object
without first removing the protection; in the UI, this is done by
deselecting this check box.

Note
Protect Object From Accidental Deletion is enabled by default on all new
OUs created in Windows Server 2008 and higher, but you can configure it
on any object in the domain—even leaf objects like users or groups.

Because this protection simply applies a Deny Delete and Deny Delete
Subtree ACL on the object to the EVERYONE group, applying this

protection may also be automated at the command line.
This code shows how to protect an individual group object from

accidental deletion using the dsacls.exe utility:
Dsacls “cn=SalesUsers,ou=Groups,dc=contoso,dc=com” /d
Everyone:SDDT

Designating Someone to Manage a Group
In a large or distributed AD environment, you may wish to delegate the
ability to perform certain tasks within the domain. One common task is
delegating the ability to manage the membership of a security or
distribution group. You can perform this task in a number of different
ways, one of which is to manipulate the managedBy attribute on the group
object. When you add a security principal to the managedBy attribute, AD
adds an access control entry (ACE) with the Allow - Write Members
permission on the group to the managedBy account.

You can use the Set-ADGroup attribute to modify the managedBy attribute on a
group object, as shown next. You can specify the identity of the security
principal in the managedBy field by its DN, GUID, SID, or sAMAccountName:
Set-ADGroup DN=SalesAdmin,OU=Groups,DC=Contoso,DC=Com –ManagedBy
“CN=Andy Ruth,OU=SalesUsers,DC=Contoso,DC=Com”

Changing the Scope and Type of a Group
After you've created a group object with a particular type (security or
distribution) and scope (domain local, global, or universal), you may later
determine that you need to modify one or both of these configured
choices. For example, you may have created a group as a distribution
group solely for the purpose of sending email messages, but later
determine that you also need to use this group to assign permissions to a
file share. As another example, you may have accidentally created a
group with a global scope only to realize that it should have been a
universal group instead. You can use the Set-ADGroup cmdlet to modify
either of these configuration items as shown:

Set-ADGroup –Identity SalesAdmins –GroupCategory Distribution
Set-ADGroup –Identity SalesAdmin –GroupScope Global

Note
Each AD group scope has certain restrictions on how its scope may be
changed. A universal group may be converted to a domain local group, or
to a global group if it doesn't contain any universal groups as members. A
global group may only be converted to a universal group, and then only if it
isn't a member of any other global groups. A domain local group may only
be converted to a universal group, and then only if it doesn't include any
members that are domain local groups. If you attempt to modify the scope
of a group in an unsupported manner, PowerShell will return an error.

Viewing All Information About a Group
Similar to the Get-ADUser cmdlet that you saw in the first half of this
chapter, you can use Get-ADGroup to obtain all configured information about
an AD group object. This code demonstrates the syntax of the Get-ADGroup
cmdlet that performs this task, including piping the output using the
Format-Table command to present the information in an easily-readable
format:
Get-ADGroup –Identity CN=SalesAdmin,OU=Groups,DC=Contoso,DC=Com
–Properties * | Get-Member

Manage Group Membership
For the final section in this chapter, we'll discuss how to manage the
security principals that are configured as members of one or more AD
group objects. The most common task you'll need to perform in this vein
is adding and removing users from one or more groups, but you'll also
find it useful to be able to view the membership of one or more groups,
export that information to a file, and even to compare the membership of
one group to the membership of another.

Documenting the Membership of Privileged Groups
As a security best practice in any AD domain, you should regularly audit
the membership in highly privileged security groups from time to time to
ensure that they only contain authorized and intended members. For
example, a common security misconfiguration occurs when a user
account is “temporarily” added to an administrative group by a technician
in order to troubleshoot an issue, but then the technician forgets to
remove the user from the group when troubleshooting is completed.

The following code demonstrates how to copy the membership of the
Administrators, Schema Admins, Domain Admins, Enterprise Admins,
Server Operators, and Account Operators security groups to a text file,
with each group's information appending to the end of the file in turn:
Get-ADGroupMember Administrators –Recursive | Out-File c:\
admingroups.txt -append
Get-ADGroupMember “Schema Admins” –Recursive | Out-File c:\
admingroups.txt -append
Get-ADGroupMember “Enterprise Admins” –Recursive | Out-File c:\
admingroups.txt -append
Get-ADGroupMember “Server Operators” –Recursive | Out-File c:\
admingroups.txt -append
Get-ADGroupMember “Account Operators” –Recursive | Out-File c:\
admingroups.txt -append

Note
As a challenge, see if you can use cmdlets that you have learned about
elsewhere in this book to read in a list of group names from a text file
instead.

Viewing the Membership of a Group
The next code example demonstrates how to use the Get-ADGroupMember
cmdlet to retrieve the membership of an AD group. Similar to other
examples of managing users and groups that you've seen in this chapter,
you can specify the group object that Get-ADGroupMember should target by its

GUID, SID, DN, or sAMAccountName:
Get-ADGroupMember –Identity “CN=Marketing Project,OU=Groups,
 DC=Contoso,DC=Com”

Adding Users to and Removing Users from a Group
The AD PowerShell module in Windows Server 2008 R2 introduces the
Add-ADGroupMember and Remove-ADGroupMember cmdlets to easily add a security
principal (user, computer, MSA, or another group) to and remove a
security principal from an AD group object. You can specify the
members to be added or removed as GUIDs, SIDs, DNs, or sAMAccountNames;
you can specify multiple individual members by separating the values
with commas. You can also use another cmdlet like Get-ADUser to locate
several accounts that meet a particular search criterion and pipe the
results to either the Add- or Remove- cmdlet.

Because group memberships are determined when a user first logs onto
AD and receives their ticket-granting ticket (TGT), changes in group
membership aren't reflected until the user logs out of their workstation
and logs back in, or uses a tool like klist.ee to destroy their Kerberos
tickets. In order for a computer account to reflect a change in group
membership, the computer must be rebooted.

This code block shows several examples of how to add users to and
remove them from an AD group using PowerShell:
Add-ADGroupMember –Identity “CN=SalesUsers,OU=Groups,DC=Contoso,
DC=Com” –Members Arose, Maxb, JSmith
Remove-ADGroupMember –Identity “CN=SalesUsers,OU=Groups,DC=Contoso,
DC=Com” –Members “CN=Andy Ruth,OU=Users,DC=Contoso,DC=Com”, Maxb

Copying the Membership of One Group to Another
In the following code, you can see how to use a combination of the Get-
ADGroupMember and Add-ADGroupMember cmdlets to retrieve the membership of one
group (SalesGroup1, in this example) and pipe the output of Get-
ADGroupMember as input to Add-ADGroupMember, to add each of those security
principals to another group (SalesGroup2, in this case):

Get-ADGroupMember –Identity SalesUsers –Recursive | Foreach {
Add-ADGroupMember –Identity ProjectUsers –Member $_

Exporting Group Membership to a File
Whether for reporting or troubleshooting purposes, it's often useful to be
able to record the membership of an AD group object into a text file for
later viewing or analysis. The following code uses the Get-ADGroupMember
cmdlet to retrieve the membership of a single AD group. When you
specify the –Recursive switch for Get-ADGroupMember, PowerShell also records
the membership of any nested groups within the specified group; if you
omit –Recursive, you only see the direct members of the group as output:
Get-ADGroupMember –Identity SalesUsers -Recursive

Comparing the Membership of Two Groups
Using a combination of the Get-ADGroupMember cmdlet and the Compare-Object
cmdlet, you can compare the membership of two different AD security
groups. When you use Compare-Object to compare two sets of objects—in
this case, two different group memberships—you specify one set of
objects as the reference set and the other as the difference set. An object
that only appears in (is only a member of) the reference set is indicated
by the <= symbol in the cmdlet output. An object that only appears in the
difference set is indicated by =>. If you include the –IncludeEqual parameter,
objects that appear in both sets are indicated by the == symbol:
$salesUsersMembers = Get-ADGroupMember –Identity SalesUsers
$marketingUsersMembers = Ge-tADGroupMember –Identity
MarketingUsers
Compare-Object -ReferenceObject $salesUsersMembers
-DifferenceObject $marketingUsersMembers

Chapter 7

Managing Computer Accounts, Objects,
and Organizational Units

IN THIS CHAPTER, YOU WILL LEARN TO:
MANAGE OBJECTS

Create and Edit Objects
Work with Service Principal Names

MANAGE COMPUTER ACCOUNTS
Create and Modify Computer Accounts
Manage Computers

MANAGE ORGANIZATIONAL UNITS
Build Organizational Unit Structures
Modify Organizational Unit Objects

In the last chapter, you learned about automating some of the most
visible pieces of AD: users and groups. We're going to expand on that
topic in this chapter and discuss the automation of any type of object,
with a focus on computer objects and organizational units. If you're a
day-to-day administrator of an AD environment, then Chapters 6,
“Administering User and Group Accounts,” and this chapter will
probably be the two that you refer to most in this book.

When talking about directory services, such as AD, there are really two
parts that can be administered. The first part is the directory service.
When administering the directory service, you're administering the way
the directory is provided to clients. Some examples include ensuring that
replication is healthy or the domain controller (DC) remains running. The

second part is to administer the data. This involves keeping the data
updated and backed up, and day-to-day administration of data such as
adding users and groups. When you put together service administration
and data administration, you have the complete picture of what needs to
be administered in AD.

Manage Objects
Objects are very generic. The term object describes a grouping of
attributes or properties that have some structure around them. Users or
groups, for example, are just objects with different sets of attributes. The
schema is the thing that defines what the object is. If you look at the user
object class in the AD schema, you'll see the attributes that user objects
can contain. Figure 7.1 shows the attribute definitions for the user object
class.

Figure 7.1 Attributes on the user object class in AD

You'll notice that two fields define attributes: Mandatory and Optional.
The Optional field is full of different attributes a user can have, but the
Mandatory field is empty! Does this mean the user object isn't required to
have any attributes? On the contrary, user objects are required to have
some attributes, but in order to understand which ones, you have to look
at the inheritance of the object. Object classes in AD inherit from other
object classes in a type of hierarchy. If you look at the Relationship tab in
the user object class, you can see the user object's parent (see Figure 7.2).
In this case, it's another object class called organizationalPerson.

Figure 7.2 Showing the parent of the user object class

Now, if you looked at the Relationship tab for the organizationalPerson
object class, you would see that it inherits from the person object class.
And if you looked at the person object class, you'd see two other things.
First, there is a mandatory attribute on the class called cn. So, the type of
object that inherits from the person class must have the cn attribute defined.
Second, the person class also has a parent class, and its name is top. The top
class is a special object class because every object in the directory
inherits from it in one way or another. This is essentially the root of the
object structure in AD. If you were to examine the top class, you'd see a
few more mandatory attributes defined. The attributes that an object
requires to exist are a combination of the mandatory attributes for each
object class in its inheritance hierarchy.

However, parent classes aren't the only objects in a class's inheritance
hierarchy. If you look back at Figure 7.2, you'll see an Auxiliary Classes

field. An auxiliary class is an abstract class, meaning you can't actually
create an object from the class. For example, the mailRecipient class is an
auxiliary class, so you can't create a mailRecipient object. Instead, auxiliary
classes must be attached to other object classes. In doing so, the other
object classes inherit the mandatory and optional attributes from the
auxiliary class. This way, you can apply a set of attributes to a specific
object class without affecting the other objects in its inheritance chain. A
good example is the securityPrincipal class. It's an auxiliary class that turns
the object it attaches to into a security principal. In doing so, it adds the
objectSID and samAccountName attributes as mandatory attributes on the object.
You could add these attributes directly to objects themselves, but using
the auxiliary class provides a sort of template, which makes the process
easier.

The last thing we want to point out in Figure 7.2 is the Possible
Superior field. When you're administering objects, the data in this field is
useful because it may prevent some frustration when you write AD
scripts. Possible Superior defines the types of objects in which the object
class can be created. The most common is the organizationalUnit class. If
you look back at Figure 7.2, you'll see that it's saying that user objects can
exist in a builtinDomain object, a domainDNS object, or an organizationalUnit
object.

Now that you understand what objects are made of, let's look at how to
manage them.

Create and Edit Objects
Creating and editing objects in AD are the fundamental characteristics of
most of the PowerShell scripts you'll write to automate tasks. This
applies not only to the management of data in AD, but also to many of the
service-management aspects of AD, which involve modifying objects as
well. Because these skills are core to AD administration with PowerShell,
it's important to fully understand them and be able to use these skills

efficiently. Also, as you work through this chapter, you'll see several
examples involving different objects types. Keep in mind that these
techniques apply to all objects in AD, including users, groups, computers,
printers, and so on.

The AD PowerShell modules provide several cmdlets for working with
objects. In this section, you'll be working primarily with these cmdlets.
We'll discuss objects in light of using Active Directory Services Interface
(ADSI) as well, but for Windows Server 2008 R2 environments, it's much
easier to use the cmdlets in AD PowerShell. You can retrieve a list of
these object cmdlets by running the following command in PowerShell
after you've imported the AD module:
Get-Command -Module ActiveDirectory *object*

Table 7.1 lists these cmdlets and explains what each does. You'll be
using most of these cmdlets in this section, but a couple of others (such
as Restore-ADObject) will be discussed in later chapters.

Table 7.1 PowerShell Cmdlets Used for Working With AD Objects
Cmdlet Description
Get-
ADObject Retrieves an object from AD.

Move-
ADObject Moves an object to a different location in AD.

New-
ADObject Creates a new object in AD.

Remove-
ADObject Deletes an object in AD.

Rename-
ADObject

Changes the name (and Common Name) of an object in AD. This cmdlet can't be used to change the samAccountName,
UPN, or any other attribute that may be used for identifying the object—only the name and CN attributes.

Restore-
ADObject

Restores a deleted object from the AD Recycle Bin or from its tombstoned state. This cmdlet does not restore data
from backups of AD.

Set-
ADObject

Configures attributes on objects. Unlike the Rename-ADObject cmdlet, Set-ADObject can be used to change the
samAccountName and various other attributes on an object.

Creating and Removing Objects
When creating AD objects in PowerShell, you need to specify a few
different items:

A name for the object
The type of object you're creating

Any mandatory attributes for the object
To create objects, you can use the New-ADObject cmdlet. Creating an object

can be as simple as providing its name and type. The following example
creates a Contact object for Lincoln Alexander:
New-ADObject “Lincoln Alexander” -Type Contact

The value specified in the Type parameter is the LDAP display name of
the object's definition in the schema. To determine what this value is, you
can use the AD Schema tool to find the display name:

1. From a DC (or a workstation with the AD management tools
installed), open a command prompt and type the following command:
regsvr32 schmmgmt.dll

You should see a dialog that says the DLL was registered
successfully. This DLL is used for managing the schema and isn't
registered by default.
2. Open the Microsoft Management Console by typing mmc at the
command prompt.
3. In the MMC dialog, click File → Add/Remove Snap-In.
4. In the Add Or Remove Snap-ins dialog, select AD Schema from the
list on the left, and click the Add button. Then, click OK.
5. When the AD Schema snap-in has loaded, expand the Classes folder
in the browser tree in the left pane. This folder lists all the object
classes that AD can create.
6. Double-click a class to bring up its Properties dialog.
7. In the General tab of the dialog, you note the Common Name field.
This is the property you'll use when creating an instance of this object,
as shown in Figure 7.3.

Figure 7.3 Viewing the name of the object class for the object you're
creating

You can also indicate the attributes to set during the creation of the
object by specifying the OtherAttributes parameter and listing the attributes
and values in an array. This form looks like the following. Notice that
each attribute and value are separated by a semicolon:
@{Attribute1=“Value1”; Attribute2=“Value2”; Attribute3=“Value3”}

For example, if you want to add a phone number to the contact object
you create, you can add the telephoneNumber attribute:
New-ADObject “Jenny Jones” -Type Contact -OtherAttributes
 @{telephoneNumber=“867-5309”}

Finding an Object
Searching for objects is one of the most common operations that AD
performs. Directory-search algorithms are optimized, so whether you

need a single object or an array of objects, AD can return those objects
quickly. There is more than one way to search for objects in the directory,
but we'll start by examining how to do this with the AD module. The
cmdlet you use is Get-ADObject. The Get-ADObject cmdlet can retrieve any
object type that exists in AD. If you want to specifically focus on users,
computers, or groups, there are special cmdlets for those object types that
are a little easier to use. Those cmdlets are discussed in other chapters
throughout this book. But to find one or more generic objects, you use the
Get-ADObject cmdlet.

To use the Get-ADObject cmdlet, the only thing you need to pass in is a
filter. This filter defines what objects are returned in the query. These
objects can be captured in an object variable in PowerShell and used
however you'd like. The filter you specify defines the attribute on which
you're matching, the value you want to match, and the comparison
operator you're using. For example, to find all users whose last name is
Smith, you can use the following filter:
{sn -eq “Smith”}

In this example, the sn attribute represents the surname (last name) of
the user. -eq is the comparison operator and states that the last name must
be equal to the value you specify. We discussed comparison operators in
Chapter 1 (“Using PowerShell with Active Directory”), so we recommend
going back and looking at Table 1.6 for a refresher. And finally, “Smith” is
the value of the last name you're matching on. Because you're comparing
string values in this case, the comparison isn't case-sensitive.

You can also use more than one filter statement in the command. For
example, suppose you want to return all objects whose last name is Smith
or Jones. That filter looks like this:
{sn -eq “Smith” -or sn -eq “Jones”}

After you've constructed your filter, you just need to call the Get-ADObject
cmdlet and pass your filter in with the -Filter parameter:
Get-ADObject -Filter {sn -eq “Smith”}

Following this example will output the Smiths to the screen in a list.

The more likely case is that you'll want to capture the Smiths into a
variable that you can use later:
$smiths = Get-ADObject -Filter {sn -eq “Smith”}

By default, only a few LDAP properties are returned with the object.
You can get additional properties by specifying the -Properties parameter
on the Get-ADObject cmdlet. If you need additional properties, you can list
them in the -Properties parameter and separate them with commas. For
example, to get the department name and telephone number for each of
the Smiths, you can use the following command:
$smiths = Get-ADObject -Filter {sn -eq “Smith”} -Properties
 department, telephoneNumber

Enumerating the Properties of an Object
Often you just want to grab an object and view its properties. Because
PowerShell is an object-based command environment, you can place a
copy of the AD object into a variable in PowerShell and work with that
copy in your script. If you're using the object multiple times in a script,
this approach makes the most sense because you're working with a cache
of the object.

First you need to retrieve a copy of the AD object. You can do this by
using the Get-ADObject cmdlet as described in the previous section, “Finding
an Object.” When you have the object in a variable, you can list its
properties by typing in the variable name. For example, the following
commands retrieve the object whose name is Lincoln Alexander and display
its properties in a list:
PS C:\> $obj = Get-ADObject -Filter {cn -eq “Lincoln Alexander”}
PS C:\> $obj | fl
DistinguishedName : CN=Lincoln Alexander,OU=Contacts,DC=contoso
 ,DC=com
Name : Lincoln Alexander
ObjectClass : contact
ObjectGUID : 7a8f353f-029c-498f-92f8-a24d0a775f2c

As you can see, this doesn't provide much information about the object.
A default set of properties is returned. Therefore, you need to specify the

additional properties that you want when you search for the object. We
showed you how to do this using the -Properties parameter in the previous
section. But when enumerating the properties of an object, you may not
know which properties exist or which ones you want to view. Therefore,
you can use a wildcard in this command to return every property that has
a value. This command resembles the following:
PS C:\> $obj = Get-ADObject -Filter {cn -eq “Lincoln
 Alexander”} -Properties *
PS C:\> $obj | fl
c : US
CanonicalName : contoso.com/Contacts/Lincoln
 Alexander
CN : Lincoln Alexander
co : United States
company : Contoso
countryCode : 840
Created : 3/24/2011 9:29:51 PM
createTimeStamp : 3/24/2011 9:29:51 PM
Deleted :
department : Human Resources
Description :
DisplayName : Lincoln Alexander
DistinguishedName : CN=Lincoln Alexander,OU=Conta
 cts,DC=contoso,DC=com
dSCorePropagationData : {12/31/1600 7:00:00 PM}
givenName : Lincoln
instanceType : 4
isDeleted :
l : Anytown
LastKnownParent :
mail : lincoln@contoso.com
Modified : 3/24/2011 9:35:06 PM
modifyTimeStamp : 3/24/2011 9:35:06 PM
Name : Lincoln Alexander
nTSecurityDescriptor : System.DirectoryServices.Acti
 veDirectorySecurity
ObjectCategory : CN=Person,CN=Schema,CN=Config
 uration,DC=contoso,DC=com
ObjectClass : contact
ObjectGUID : 7a8f353f-029c-498f-92f8-a24d0
 a775f2c
postalCode : 73841
ProtectedFromAccidentalDeletion : False
sDRightsEffective : 15
sn : Alexander
st : NT
streetAddress : 123 Oak Street
telephoneNumber : 555-123-4567
title : Analyst
uSNChanged : 20578

uSNCreated : 20572
whenChanged : 3/24/2011 9:35:06 PM
whenCreated : 3/24/2011 9:29:51 PM

Moving an Object to Another OU
Moving an object to another OU is an easy task when you're working in
the Active Directory Users and Computers tool. There, you can drag and
drop the object wherever you'd like. However, in a command line or
script, you're changing the Distinguished Name (DN) attribute of the
object. When you do this, you change the logical hierarchy that the object
falls under. At its deepest levels, AD doesn't have a hierarchy. When
objects are stored in the AD database, each object is stored in the table in
a separate row. In this database, there is no sense of hierarchy; every
object is just a record. This hierarchy is built out according to the DN of
each object when the directory is accessed by an application. Building out
the application's view of this hierarchy is performed by NTDSA.DLL.

One impact you need to keep in mind is that when you move an object,
the object's parent changes. Often, an object will receive a set of
permissions or Group Policies based on its parent container or a
grandparent container. By moving the object, you'll likely affect these
permissions or Group Policies. Consider the following example. Suppose
that you have a Group Policy applied to a user object in the Sales OU. If
you move that user to the Accounting OU, that Group Policy will no
longer be applied to that user. The same is true for permissions on the
object. Suppose an administrator has permissions to change the telephone
number attribute on the users in the Sales OU. The users in that OU get
this permission applied through an access control entry (ACE) on the
object. The user object has inheritable permissions enabled on it and
therefore receives the permissions applied at its parent (the Sales OU) or
grandparent object. When you move that user from the Sales OU to the
Accounting OU, the set of inherited permissions changes as well. This
isn't irreversible, however: You can move the object back or apply the
Group Policy or permissions to the new OU.

First, let's look at what it takes to move an object using the AD module.
To move an object, you use the Move-ADObject cmdlet. This cmdlet is easy to
use; you only need to pass in two parameters. The first parameter (-
Identity) is the DN of the object you're moving. The second parameter (-
TargetPath) is the DN of the target location for the object. This location
doesn't have to be an OU—it can be a container or any other location that
can act as a parent to the object type you're moving. Both parameters are
positional, so you can run the cmdlet without having to specify the
parameter name as long as you put them in the correct order. For
example, the following cmdlet moves Nora Shea's contact object from the
Sales OU to the Accounting OU:
Move-ADObject “cn=Nora Shea,ou=Sales,dc=contoso,dc=com”
 “ou=Accounting,dc=contoso,dc=com”

This command is functionally equivalent to the following command,
with the difference being that you're specifying the parameter name
rather than depending on the position of the parameter:
Move-ADObject -Identity “cn=Nora Shea,ou=Sales,dc=contoso,
 dc=com” -TargetPath “ou=Accounting,dc=contoso,dc=com”

To use ADSI to move an object, you use the MoveTo method. The
parameter you pass in to the method is the LDAP of the target location.
For example, the following commands move Nora Shea's contact object
to the Accounting OU, just as the AD module example did:
PS C:\> $nora = [ADSI]”LDAP://cn=Nora Shea,ou=Sales,
 dc=contoso,dc=com”
PS C:\> $nora.MoveTo(“LDAP://ou=Accounting,dc=contoso,dc=com”)

One important thing to keep in mind when using ADSI to move objects
is that you're required to specify the target location as an LDAP path,
meaning that you must prefix the DN with LDAP://. Also, in the LDAP://
prefix, LDAP must be all capital letters. If you use lowercase letters (ldap),
ADSI will throw an error. This is generally how all LDAP paths are
processed in ADSI.

Determining When an Object Was Created or Last
Changed
When an object in AD is created or modified, metadata is stored about
that object. Much of this metadata is used during the replication process
to help determine whether an object or attribute was updated and whether
it needs to be replicated to another DC. There is also some timestamp
information stored with each object. In particular, each object stores two
attributes that can be used to determine when it was created or last
modified, whenCreated and whenChanged.

Getting the Creation Date
To determine when an object was created, you can use the whenCreated
attribute. This attribute is included in the abstract class top, from which
every object is derived. Because of this abstract class, the whenCreated
attribute exists on all objects in the directory. Therefore, you can use this
attribute to determine when any object was created, including the domain
object at the root of the directory. As a side note, if you examine the
whenCreated attribute of the domain object, you can see when the domain
was created.

The only thing you need to do to read this data is grab the object in
PowerShell and display the whenCreated property. First, use the Get-ADObject
cmdlet to get the object you want to examine, as shown in the section
“Finding an Object.” From there, you can simply display the whenCreated
attribute. The following example looks at the domain object for the
contoso.com domain and displays its creation date:
PS C:\> $domain = Get-ADObject “dc=contoso,dc=com”
 -Properties whenCreated
PS C:\> $domain.whenCreated

Saturday, December 11, 2010 3:36:01 PM

If you leave off the -Properties parameter, the whenCreated attribute won't
be available. By default, this attribute isn't included in the set of

attributes that are available in the Get-ADObject cmdlet.

Getting the Modified Date
The process of learning when an object was modified is very similar to
the process for getting its creation date. This information is kept in the
attribute whenChanged. Therefore, in order to get the information, you only
need to display this attribute. The following example displays the date
and time when Nora Shea's contact object was last updated:
PS C:\> $user = Get-ADObject “cn=Nora Shea,ou=contacts,
 dc=contoso,dc=com” -Properties whenChanged
PS C:\> $user.whenChanged

Friday, January 28, 2011 9:50:18 AM

Searching for Recently Created Objects
Knowing the creation date and modified data by itself may not be all that
useful. However, when used in the appropriate script, it can provide some
very useful information about your directory. As an example, the script in
Listing 7.1 uses this technique to display all objects created in the past
seven days.

Listing 7.1: GetRecentObjects.ps1

File Name: GetRecentObjects.ps1
Description:
Retrieves a list of the recently created objects from Active
Directory. Modify the $num_days and $output_file variables
to change the number of days back that we are looking for
new objects and the HTML file that the report is written to.
##
Set the HTML file that you want to write the report to
$output_file = “c:\recent_objects.html”
Set the number of days that we are searching for objects
$num_days = 7
Header displayed on the HTML report
$header = “Objects Created Within the Past $num_days Day(s)”
Defines the style of the HTML output
$style = “<style>BODY{background-color:lightgrey;}”
$style += “TABLE{border-width: 1px;border-style: solid;”
$style += “border-color: black;border-collapse: collapse;}”
$style += “TH{border-width: 1px;padding: 0px;”

$style += “border-style: solid;border-color: black;”
$style += “background-color:#333; color: white}”
$style += “TD{border-width: 1px;padding: 0px;”
$style += “border-style: solid;border-color: black;”
$style += “background-color:#EFF4FB}</style>”
Gets the current date minus 7 days for the search filter
$current_date = Get-Date
$past_days = New-Timespan -Days $num_days
$start_date = $current_date.Subtract($past_days)

Retrieve all objects created within the past 7 days
$objects = Get-ADObject -Filter {whenCreated -gt $start_date} ‘
 -Properties whenCreated
Write the objects out to the HTML file
$formatted_obj = $objects | Select-Object distinguishedName,
 whenCreated, objectClass
$html_out = $formatted_obj | ConvertTo-HTML -head $style ‘
 -body “<H2>$header<H2>”
$html_out | Out-File $output_file
Display the HTML report
Invoke-Expression $output_file

Clearing an Object's Attribute
Sometimes, when you're working with objects, you may need to clear the
contents of an attribute. This may not be as easy as it sounds. Depending
on the type of attribute, simply setting the attribute to a null string may
not work. Fortunately, this is simple when you're working with the AD
module in PowerShell. You can call the Set-ADObject cmdlet and set its -
Clear parameter to the attribute you want to clear out. The following
example clears the manager attribute in Nora Shea's contact object:
Set-ADObject “cn=Nora Shea,ou=contacts,dc=contoso,dc=com”
 -Clear manager

Using ADSI, on the other hand, is a bit trickier. ADSI contains a flag
called ADS_PROPERTY_CLEAR. Instead of setting an attribute to null or an empty
string, you pass in the ADS_PROPERTY_CLEAR flag. To use this flag, you call the
PutEx method on the ADSI object and pass in the ADS_PROPERTY_CLEAR flag as
the first parameter. This flag has a value of 1, so you can also pass in 1 as
the first parameter. The following example clears out the manager attribute
on Nora Shea's contact object:
PS C:\> $nora = [ADSI]”LDAP://cn=Nora Shea,ou=contacts,
 dc=contoso,dc=com”

PS C:\> $nora.PutEx(1, “manager”, 0)
PS C:\> $nora.SetInfo()

Exporting Objects to a File
So far in this chapter, we've given you some methods you can use to
search for objects, report on them, and manipulate them. Often, you'll
want to not only view this information, but also extract some of it from
AD so you can generate reports outside of PowerShell. For example, you
may want to dump objects into a comma-separated values (CSV) file so
you can import them into a lab environment or a build a spreadsheet from
them.

PowerShell has built-in cmdlets for handling this functionality. In order
to export objects from AD, you need to pass the objects into one of the
following cmdlets:

Export-CSV: Exports data to a comma-separated file
Export-CliXML: Exports data to an XML file

Dumping Objects to a CSV File
First we're going to look at how to export objects to a CSV file. CSV files
can be useful because they can be easily imported into Microsoft Excel
and used to generate reports or perform mass manipulation of the data.
To export AD objects to a CSV file, you pass the objects into the Export-CSV
cmdlet. The following example uses the AD module to export a list of
contact objects and their properties:
$contacts = Get-ADObject -Filter {objectClass -eq “contact”}
 -Properties *
$contacts | Export-Csv c:\contacts.csv

The CSV file has a header row that contains the name of the attribute in
each of the fields. When you import the CSV file into Excel or a similar
spreadsheet application, the fields in the CSV are parsed into cells.

Exporting Objects to an XML File

You can also export the objects into an XML file. Doing so can be useful
if you have another script or application that can consume this data in the
XML format. To export the data to XML, use the Export-CliXML cmdlet. The
process is similar to the CSV file export; just pipeline the objects into the
Export-CliXML cmdlet, and specify the name of the output file:
$contacts = Get-ADObject -Filter {objectClass -eq “contact”}
 -Properties *
$contacts | Export-CliXML c:\contacts.xml

Work with Service Principal Names
Service principal names (SPNs) are often misunderstood. Usually, when
they're needed, they're created either by the application or by the
administrator without a second thought. However, they're also a major
source of frustration when they don't work right. Before we dive into how
to work with SPNs, we'll first spend some time explaining how they
work.

Registering a Service Principal Name
Perhaps the best way to understand SPNs is to take a look at how clients
authenticate to services. The primary authentication protocol used in
Windows is the Kerberos protocol. In older versions of Windows, the NT
LAN Manager (NTLM) protocol was the primary protocol used, and it
still is for non-domain joined machines. Kerberos is a more secure
protocol, so when possible, Kerberos is preferred over NTLM. However,
NTLM is still used as a fallback in some cases.

When a client accesses a service on a remote server, the client has to be
authenticated. For instance, consider the case where a user accesses a file
share. The server must know who the user is so it can enforce the
appropriate permissions on the file share. If the server uses NTLM to
authenticate the user, it generates some random data and gives it to the
client. The client uses its password to encrypt this data and sends it back
to the server. The server then takes the encrypted data from the client and

sends it to a DC along with the client's user name and the random data in
unencrypted form. The DC uses the client's password in AD to encrypt
the unencrypted data (because this is the same data that the server sent to
the client). If the data encrypted by the DC matches the data that the
client encrypted, then that is used as proof that the client knew the
password.

Kerberos, on the other hand, uses the concept of tickets. When Kerberos
authentication is used in the same scenario, the file server never
challenges the user for authentication. Rather, the user goes to the DC and
requests a ticket that it can use to access the server. This ticket is
encrypted with a hash of the server's password (also referred to as a
long-term secret) and given back to the client. Because the server's ticket
is encrypted, the client can't view what's inside or modify it. The client
sends the ticket to the server, and the server decrypts the ticket with its
copy of the long-term secret. When the DC issued the server's ticket to
the client, it embedded a session key that the server can use to
authenticate the client. After the server decrypts the ticket, it then has this
session key and can use it to decrypt the client's authenticator message,
which was also passed in the ticket. The bottom line is that the server has
everything it needs to authenticate the client without having to mediate
the client's communication with the DC.

The process we just described explains the need for an SPN. The SPN
creates an identity for a service. When the client requests a ticket for the
service, the client sends the SPN to the DC. The DC then determines
which account holds the SPN (an SPN can only be associated with one
account, but one account can have multiple SPNs). The DC uses the long-
term secret of this account to encrypt the ticket that it sends back to the
client. When the client sends this ticket to the service (as in the Kerberos
walkthrough we just discussed), the account under which the service is
running uses its long-term secret to decrypt the ticket. The result is that
the service now has a shared secret with the client that it can use for
secure communications and to verify the client's identity.

HOST SPNS
In working with AD, you may come across a particular SPN known as a HOST SPN.
The HOST SPN is a generic SPN that applies to many services. The account under
which these services run is the server's computer account, such as Local System.
Therefore, when an SPN is used to acquire a Kerberos ticket for these HOST
services, AD maps the HOST SPN to the server's computer object in AD and uses its
long-term secret to encrypt the ticket.

One other common point of confusion with SPNs is how many different
SPNs should be registered for a service. The answer is, as many as are
needed. When the client requests a Kerberos ticket for a service, it doesn't
have any way of finding the service's SPN. Instead, the client constructs
what it thinks the SPN is from the information it has. For example, it may
use a configuration setting in the client application or the name of the
server that you tell the client to use. It doesn't really matter what this
name is. If the client could potentially use it to build the SPN, an SPN
needs to be created for that name and associated with the account under
which the service is running. That's why you'll often see SPNs registered
as both fully qualified names and NetBIOS names. For that particular
application, there's a chance that the client could use either the fully
qualified name or the host name to build the SPN, so the DC needs to be
able to resolve that SPN to an account for creating the Kerberos ticket.

SPNs are stored on the account they're associated with in the
servicePrincipalName attribute. This attribute is multivalued, because
multiple SPNs can be associated with a single account. When it comes
down to it, an SPN is just an attribute on a user or computer account in
AD. To create an SPN, you need to set this attribute. But before you can
do that, you need to know how the attribute is formatted. The format of
the servicePrincipalName attribute is as follows.
ServiceClass/HostName:Port AccountName

There are generally four parts to an SPN. Table 7.2 explains what each
of the components does.

Table 7.2 Components of an SPN
Name Requirement Description
ServiceClass Mandatory Identifies an instance of the service that the SPN is for.
HostName Mandatory Identifies the host name on which the service is running.

Port Optional Identifies the port on which the service is listening. There may be more than one instance running
on the host. If so, the port component distinguishes one instance from another.

AccountName Optional Allows you to associate an additional account identifier with the SPN.

More often than not, when you're dealing with SPNs, you'll only use the
ServiceClass/HostName format. You may use the port every now and then, but
as shown in Table 7.2, the port isn't a required component. One question
that often comes up is, “What should you use for the HostName component?”
Generally speaking, you want an SPN registered for each alias the host
goes by. For instance, if you're registering an SPN for a web service
running on the computer contoso-web.contoso.com to use Kerberos
authentication, you might register the following SPNs:

http/contoso-web.contoso.com

http/contoso-web

http/www.contoso.com

The key thing to remember is that the client that requests the service
ticket for the contoso-web.contoso.com server needs to build the SPN and send
it to the DC. If the client accesses the server with the name contoso-
web.contoso.com, then that's likely to be what the client builds the SPN on.
The DC then needs to be able to associate the SPN http/contoso-
web.contoso.com with the account under which the web service is running,
which is the account on which you create the SPN.

To create an SPN in PowerShell, you first need to get an instance of the
account the SPN will be associated with. Then, you need to set the
servicePrincipalName attribute. With the AD module in PowerShell, you can
do this with a single command. The following command sets an SPN
called http/contoso-web.contoso.com on the account svc_http. To add additional
SPNs, you can run this command as many times as needed. Each time, the
SPN will be added to the multivalued attribute:
Set-ADObject “cn=svc_http,ou=Accounts,dc=contoso,dc=com” -Add

@{servicePrincipalName=“http/contoso-web.contoso.com”}

Finding Duplicate Service Principal Names
As discussed in the previous section, SPNs play a vital role in the
Kerberos authentication process. In the past, SPNs have caused a lot of
problems because they're often misunderstood. It's understandable why
that's the case, because you need a lot of background knowledge about
authentication protocols if you really want to understand what the SPN is
for.

One aspect of SPNs that has plagued administrators for years is the
issue of duplication. If you think back to the previous section, we
discussed the fact that an account can have multiple SPNs associated with
it. This makes sense, because a single service account could be used for
multiple services on many different servers. However, we also stated that
you can only associate an SPN with one account. The reason is that the
DC needs to be able to tie an SPN to a single account in AD. Because the
SPN represents the identity of the service, that identity must be unique.
So although you can have one account with multiple SPNs, you can only
use an SPN on one account.

If you're experiencing a problem and think a duplicate SPN may be the
culprit, there are a couple of different ways to tell. The quickest is to look
in your DC's event logs for an error event whose source is the Kerberos
Key Distribution Center (KDC) with event ID 11. If you find this event-
log entry, it will specifically tell you that there are duplicate SPNs and
will even tell you which SPNs are duplicates. At that point, you need to
determine which account the SPN really needs to be associated with and
then remove the SPN from the accounts it doesn't belong to.

If you don't want to wait for an error event in your DC, you can use
PowerShell to find duplicate SPNs as well. This technique can be useful
if you're scripting the installing of a network service, such as SQL or
Forefront Identity Manager. Before creating your SPN via PowerShell,
it's a good idea to check for duplicates first.

Checking for duplicate SPNs is as simple as retrieving all the SPNs in
the domain and performing a query against each one to see if it exists
anywhere else. The PowerShell script in Listing 7.2 uses the AD module
to find and report on each duplicate SPN in the current domain. This
script prints out the list of duplicates to the PowerShell console, but you
can use the function in your own scripts to make decisions about whether
you should continue with creating an SPN or not.

Listing 7.2: GetDuplicateSPNs.ps1

File Name: GetDuplicateSPNs.ps1
Description:
Uses a function called FindDupSPNs to report on duplicate
SPNs found in the current domain.
##
Function FindDupSPNs
{
 $objects = Get-ADObject -Filter {servicePrincipalName
 -like “*”} -Properties ServicePrincipalName
 foreach ($col_SPN in $objects)
 {
 foreach ($SPN in $col_SPN.servicePrincipalName)
 {
 $all += @($SPN)
 }
 }
 $unique_SPNs = $all | Sort-Object | Get-Unique
 foreach ($SPN in $unique_SPNs)
 {
 $dup_search = Get-ADObject -Filter {servicePrincipalName
 -eq $SPN}
 if ($dup_search.Count -gt 1)
 {
 Write-Host “Duplicate SPN found: $SPN”
 Write-Host “-” -NoNewLine
 $dup_search | ft distinguishedName -HideTableHeaders
 }
 }
}

FindDupSPNs

Manage Computer Accounts
The AD module in PowerShell gives you the ability to handle generic

objects through the *ADObject cmdlets. Realistically, you can likely handle
any situation on any object type you're working on using these cmdlets.
However, the module also provides some cmdlets that are focused on
working with computer objects specifically. Although at the end of the
day, computer objects are really just another object type, sometimes
some administrative tasks require more handling than just modifying an
attribute. In this section, we'll focus on computer objects and explain how
to use PowerShell to manipulate them.

Create and Modify Computer Accounts
When you're working with computer objects in the directory, the AD
module provides several cmdlets that you can use. You can view this list
of cmdlets by running the following command:
Get-Command *computer -Module ActiveDirectory

Table 7.3 describes each of these cmdlets and how they're used to work
with computer objects.

Table 7.3 AD Module Computer Cmdlets
Cmdlet Description
New-ADComputer Creates a new computer object in the domain
Remove-ADComputer Removes an existing computer object from the domain
Get-ADComputer Retrieves one or more computer objects based on the criteria that you specify when running the cmdlet
Set-ADComputer Can be used to change the properties of a computer object

Pre-creating Computer Accounts
Computer accounts don't always have to be created ahead of time in AD.
However, there are some cases when doing so is necessary or beneficial.
For instance, you may have a group of administrators or users adding
computers to the domain in a remote location. By creating the computer
accounts in the domain for them, the users don't need permissions in the
directory to create these accounts themselves. Rather, their accounts just
need permissions to use the existing computer account. Pre-created

computer accounts are also necessary when you're performing an offline
domain join or joining a computer to a domain via a read-only DC
(RODC; both scenarios are covered later in this chapter).

Creating a computer account in AD is relatively straightforward. You
use the New-ADComputer cmdlet to create a computer object and set its
properties at the time it's created. After the account is created, anyone
with adequate permissions can add a computer to the domain that uses
that account. When the account is created, a random 240-character
password is set; this password is used to authenticate the computer to the
domain. In order for a secure session to be established by a computer and
a DC, this password must be known by both parties. This can happen in
one of two ways:

The password for the computer account can be set to the name of the
computer in lowercase characters. This is what happens when you
reset the password for the computer object in Active Directory Users
and Computers.
The password can be randomly generated. When the computer joins
the domain, you're prompted for account credentials, which are used
for authentication instead of a prenegotiated password.

The New-ADComputer cmdlet generates a random password by default, but
you can choose to specify your own using the AccountPassword parameter. If
you specify the name of the computer object in lowercase letters as the
password, then this is functionally equivalent to assigning the computer
object as a pre-Windows 2000 computer when creating the computer
account in the Active Directory Users and Computers tool.

The following command creates a computer account in the domain at
which you logged in:
New-ADComputer <computername>

Modifying a Computer Account's Properties
To modify the properties of a computer account, you can use the Set-
ADComputer cmdlet. The only thing you have to do is specify the name of the

computer and the attributes you want to change. The convenient thing
about using this cmdlet instead of the Set-ADObject cmdlet is that you don't
have to know the DN of the computer object. Because of this, it's not
necessary to know where the computer resides in the OU structure; nor do
you have to perform an additional query to obtain this information before
running the cmdlet.

The following example changes the description of the computer
account called tom-laptop:
Set-ADComputer tom-laptop -Description “Tom's Windows 7 Laptop”

There are several named parameters included with this cmdlet that you
can use to change the properties directly. In the previous example,
Description is one such named parameter. However, there won't be a
parameter for every attribute that you want to modify. If you encounter
an attribute that doesn't have a parameter, you can use the Replace
parameter to replace an attribute's value by name. For example, the
following command updates the Department attribute, which isn't exposed as
a named parameter in the Set-ADComputer cmdlet:
Set-ADComputer tom-laptop -Replace @{department=“Sales”}

When specifying the values to replace, use the format
@{attribute=“value”}. If you need to replace additional attributes, you can
separate them with semicolons inside the curly brackets.

Deleting a Computer Account
To delete a computer account from your domain, you can use the Remove-
ADComputer cmdlet. It's important to note that deleting the account doesn't
mean the computer is properly unjoined from the domain. If you don't
unjoin the computer from the domain first, the computer will still think
it's a valid computer on the domain. If you're allowing cached credentials
on the computer, a user who has previously logged in can unplug the
network connection and log in with those cached credentials. Therefore,
it's important to keep in mind that deleting a computer account isn't an

adequate procedure to control data leakage during a security breach.
The following example removes the computer account for the computer

named tom-laptop from the domain. The presence of the Confirm parameter
at the end of the command ensures that you're not prompted with an “Are
you sure that you want to continue?” message:
Remove-ADComputer tom-laptop -Confirm:$false

In removing computer accounts, you may run into a situation where you
receive the following error message:
Remove-ADComputer : The directory service can perform the requested
operation only on a leaf object
At line:1 char:18
+ Remove-ADComputer <<<< tom-laptop -Confirm:$false
 + CategoryInfo : NotSpecified: (tom-laptop:ADComp
 uter) [Remove-ADComputer], ADException
 + FullyQualifiedErrorId : The directory service can
 perform the requested operation only on a leaf object,
 Microsoft.ActiveDirectory.Management.Commands.RemoveADComputer

This error message means child objects were attached to the computer
object. The Remove-ADComputer cmdlet can't delete those child objects, so you
must remove them manually before using the Remove-ADComputer cmdlet to
delete the computer account. An easier approach may be to use the Remove-
ADObject cmdlet instead and specify the -Recursive parameter. The difference
is that when you use the Remove-ADObject cmdlet, you need to know the DN
of the computer account, so this technique requires some additional work.
The following commands remove the computer account using this
approach:
PS C:\> $comp = Get-ADComputer tom-laptop

PS C:\> Remove-ADObject $comp.DistinguishedName -Recursive
 -Confirm:$false

Changing the Default Location for Computer
Accounts
The default location for computer accounts in the domain is known as a
well-known container. This means a globally unique identifier (GUID)
that never changes is associated with this location. DCs are hard-coded

with this GUID and maintain a mapping of the GUID and the location in
the directory. For the Computers well-known container, this GUID is
AA312825768811D1ADED00C04FD8D5CD. To see a list of well-known
containers, you can run the following commands:
PS C:\> $rootDSE = Get-ADRootDSE

PS C:\> $wko = Get-ADObject $rootDSE.DefaultNamingContext
 -Properties wellKnownObjects
PS C:\> $wko.wellKnownObjects

B:32:6227F0AF1FC2410D8E3BB10615BB5B0F:CN=NTDS Quotas,DC=contoso,
DC=com
B:32:F4BE92A4C777485E878E9421D53087DB:CN=Microsoft,CN=Program
Data,DC=contoso,DC=com
B:32:09460C08AE1E4A4EA0F64AEE7DAA1E5A:CN=Program Data,DC=contoso,
DC=com
B:32:22B70C67D56E4EFB91E9300FCA3DC1AA:CN=ForeignSecurityPrincipals,
DC=contoso,DC=com
B:32:18E2EA80684F11D2B9AA00C04F79F805:CN=Deleted Objects,DC=contoso,
DC=com
B:32:2FBAC1870ADE11D297C400C04FD8D5CD:CN=Infrastructure,DC=contoso,
DC=com
B:32:AB8153B7768811D1ADED00C04FD8D5CD:CN=LostAndFound,DC=contoso,
DC=com
B:32:AB1D30F3768811D1ADED00C04FD8D5CD:CN=System,DC=contoso,DC=com
B:32:A361B2FFFFD211D1AA4B00C04FD7D83A:OU=Domain Controllers,
DC=contoso,DC=com
B:32:AA312825768811D1ADED00C04FD8D5CD:CN=Computers,DC=contoso,
DC=com
B:32:A9D1CA15768811D1ADED00C04FD8D5CD:CN=Users,DC=contoso,DC=com

You can see from this list that the GUID
AA312825768811D1ADED00C04FD8D5CD maps to the location
CN=Computers,DC=contoso,DC=com. So, to modify the default location for
computer accounts, you need to modify that location. The next example
makes the new default location OU=Workstations,OU=Accounts,DC=contoso,DC=com.
To make this change, you simply need to call the Set-ADObject cmdlet and
replace the value in the multivalued string attribute. Assuming that you
haven't changed this default location in the past, you can use the
following commands:
PS C:\> $rootDSE = Get-ADRootDSE

PS C:\> Set-ADObject $rootDSE.DefaultNamingContext -Add

 @{wellKnownObjects=”B:32:AA312825768811D1ADED00C04FD8D5CD:

 OU=Workstations,OU=Accounts,DC=contoso,DC=com”} -Remove

 @{wellKnownObjects=” B:32:AA312825768811D1ADED00C04FD8D5CD:
 CN=Computers,DC=contoso,DC=com”}

If you've already changed the location of the Computers container in the
past, you'll need to read the existing values and parse the strings before
setting the new location.

Manage Computers
When we think of managing computers in AD, other things come to mind
aside from modifying the computer objects. PowerShell can help you
manage other aspects of domain-joined computers as well. In this section,
we'll show you how to perform an offline domain join, how to find and
filter out certain computers in your domain that meet criteria such as
operating system version, and how to allow your users to join more than
10 computers to the domain. At the end of the section, we'll even provide
you with a script you can use to detect, disable, move, or delete stale
computer accounts.

Performing an Offline Domain Join
One of the more interesting new features in Windows Server 2008 R2 and
Windows 7 is the ability to join a computer to the AD domain while the
network is offline. This feature, called Offline Domain Join (ODJ), was
created with image deployment in mind. Although the computer gets
joined to the domain, the user can't log in until a DC is reachable. In more
active deployment scenarios, the ODJ feature may not be as important.
However, there is a place for ODJ when you're deploying many domain-
joined virtual machines. This feature allows you to deploy these domain-
joined computers without requiring network credentials.

ODJ can only be used for Windows Server 2008 R2 and Windows 7
computers. But these computers can be joined to any version of AD and
the ability to perform the ODJ doesn't require a Windows Server 2008 R2
DC.

Joining a computer to the domain offline is a two-part process. In the
first part, you use a tool supplied with Windows called djoin.exe. When
run with the /provision switch, this tool pre-creates a computer object and
sets some metadata on it. As a result, a file is output from the command.

In the second part of the process, the file that was output from the first
part is given to the offline computer, and djoin.exe is run on the client.
This time, the client uses the /requestodj switch, which indicates that this
computer will be joining the domain. The computer will be joined to the
domain upon the next reboot, without ever having to contact a DC.

Staging the Computer Account
We're going to cheat here. The djoin.exe tool is a utility supplied with the
operating system and not a PowerShell cmdlet or script. Because this tool
does more than just pre-create a computer account, you still use the tool
in PowerShell. However, PowerShell brings value to the table when you
want to join multiple computers to the domain, which is usually the case.
When you call this command from PowerShell, you can have PowerShell
read a list of computers from a CSV file and perform an ODJ for those
computers. There's a lot of value in wrapping some automation around
this process.

When calling the djoin.exe command to stage the computer object, you
use the following syntax:
djoin /provision /domain <DomainName> /machine <ClientName>
 /savefile <FileLocation>

You take the output of the command, specified in the /savefile
parameter, and copy it to the client you're joining to the domain.

Joining the Client to the Domain
After you've copied the output file to the Windows 7 or Windows Server
2008 R2 client computer, log onto that computer with your local
administrator credentials and run the djoin.exe tool again. This time,

specify the /requestodj switch, which tells the computer to join the domain
on the next reboot. The command to run on the client has the following
syntax:
djoin /requestodj /loadfile <FileLocation> /windowspath
 <WindowsPath> /localos

The previous command is used for a client computer that you're
currently logged onto. If you have an image instead—a VHD file, for
example—then you can mount the VHD file and run the same command
without the /localos switch. When you do, specify the location of the
target computer's Windows path, not the Windows path of the machine
you're currently logged onto.

Troubleshooting
If you encounter issues with the offline domain-join process, you can
troubleshoot them by reviewing the netsetup log. Because this is a two-part
process, two separate logs are kept. When you're troubleshooting errors
that occur when attempting to stage the computer account, look at the
netsetup.log file on the computer from which you're running the djoin.exe
command. This file is kept in the %systemroot%\debug folder. When you're
troubleshooting issues that involve the client computer becoming joined
to the domain, consult the netsetup.log file on the client computer. This file
is kept in the same place—%systemroot%\debug.

One other thing you may want to do when troubleshooting is to ensure
that the user has the appropriate permissions to perform an offline
domain join. The permissions required are the same permissions needed
to perform an online domain join. The user must either be granted
permission to “Add workstations to the domain” in the User Rights
Assignment policy in a Group Policy Object or be able to create computer
objects in the target OU for the account.

Finding a Computer Based on the Operating

System
There are many ways to try to find computers in your domain. One of the
more useful approaches is to search by OS. This method is often
employed when filtering Group Policy Objects (GPOs) for different
versions of Windows. Four attributes in AD contain OS information
about the computer. Table 7.4 describes these attributes.

Table 7.4 Operating System Attributes in AD
Attribute Description
operatingSystem Specifies the name of the OS, such as “Windows 7 Enterprise”
operatingSystemHotfix Specifies the hotfix level of the computer
operatingSystemServicePack Reports the computer's current service-pack level
operatingSystemVersion Details the current version of the OS, including the build; for example, “6.1 (7600)”

These OS attributes are updated by the client computers and first
populated during the domain-join process. Therefore, after a client
successfully boots up on the domain, these attributes are available to be
used in queries and scripts. The easiest way to filter your search results
with these attributes is to use the Get-ADComputer cmdlet in the AD module.
You can specify the version you're looking for as part of the Filter
parameter. When using this parameter, you'll more than likely prefer to
use the -like comparison operator so you can use wildcards in your search.
For example, to retrieve a list of all Windows 7 clients in the domain, you
can run the following command:
Get-ADComputer -Filter {operatingSystem -like “Windows 7*”}

In a similar manner, if you want to return all computers that are
running Windows 7 or Windows Server 2008 R2 (both use kernel version
6.1), you can run the following command:
Get-ADComputer -Filter {operatingSystemVersion -like “6.1*”}

From here, you can treat your results list just as you would any other
list of objects in PowerShell and wrap some automation around tasks that
you may perform on these computers.

Changing the Number of Computers a User Can
Join to a Domain
By default, users who are allowed to join computers to the domain are
limited in the number of computers they can add. This limit is specified
in the ms-DS-MachineAccountQuota attribute, which resides on the domain object
in AD. You can modify the number of computers that users can join by
modifying this attribute.

To determine the current value of the object, you can run the following
PowerShell commands:
PS C:\> $rootDSE = Get-ADRootDSE

PS C:\> Get-ADObject $rootDSE.defaultNamingContext -Properties
 ms-DS-MachineAccountQuota

DistinguishedName : DC=contoso,DC=com
ms-DS-MachineAccountQuota : 10
Name : contoso
ObjectClass : domainDNS
ObjectGUID : 15f1ef14-7d0c-4540-854a-d3ae2a450baa

Notice from this output that the default setting is 10. When the user
attempts to add the eleventh computer to the domain, they hit their limit
and are prevented from adding the computer. Modifying this attribute
directly solves the problem. The following command increases the limit
to 25:
Set-ADObject $rootDSE.defaultNamingContext -Replace
 @{“ms-DS-MachineAccountQuota”=25}

Removing Stale Computer Accounts from the
Domain
As administrators, we often find that our systems often suffer from years
of built-up issues. When it comes to large, enterprise-scale systems like
AD, this is especially true, because it's nearly impossible to catch every
little thing. One issue that may have been creeping up over the years is
computers that were added to your forest and that no longer exist. How do
you detect these computers and get rid of them?

There are a few different ways to detect stale computer accounts.
Perhaps the most effective way is to look at when the computer object's
password was last changed. Unless you explicitly disabled machine
account password resets at some point (which is possible if your domain
was upgraded from Windows NT), all computers that are joined to the
domain will automatically change their own password every 30 days.
Because computer accounts are security principals just like user accounts,
this is a security feature of AD. Therefore, to determine whether a
computer is stale (the computer no longer exists, but the object is still
there), you can search for computers whose passwords haven't been
changed within the past 30 days. This date is stored in the pwdLastSet
attribute. The following series of PowerShell commands retrieves all
computer objects whose passwords haven't changed in the past 30 days:
PS C:\> $current_date = Get-Date
PS C:\> $past_days = New-Timespan -Days 30
PS C:\> $start_date = $current_date.Subtract($past_days)

PS C:\> Get-ADComputer -Filter {pwdLastSet -lt $start_date}
 -Properties pwdLastSet

Now that you have a list of computers that you consider stale, the next
step is to determine what to do with them. If you're bold, you can go right
ahead and delete them. However, if you make a mistake, then you should
be ready to rejoin that computers to the domain. A better move is to move
the computers to an alternate OU and attempt to contact the owners. Be
aware, though, that by moving a computer to another OU, the GPOs
applied at its current OU may not apply, and that may impact how the
computer functions. If you have executive sponsorship, consider
disabling the accounts as well. That way, if a computer is still being used,
you can reenable the account and move it back.

The script in Listing 7.3 can help you clean up stale computer accounts.
This script includes the following switches:

-delete: Deletes the computer account
-move: Moves the computer account to the specified OU
-disable: Disables the account

If you run the script without any switches, it will display a report of
computers that are considered stale but won't do anything with them.

Listing 7.3: ManageStaleComputers.ps1

File Name: ManageStaleComputers.ps1
Description:
Enumerates the computers in the domain, searching for
computer accounts whose passwords have not been changed
within the past 30 days. This script can delete, disable,
and/or move the computer accounts to an alternate OU.
##

param([switch]$Disable, [switch]$Delete, [string]$Move=””)

Gets the current date minus 30 days for the search filter
$current_date = Get-Date
$past_days = New-Timespan -Days 30
$start_date = $current_date.Subtract($past_days)
Retrieve all computer accounts whose passwords haven't changed
within the past 30 days
$objects = Get-ADComputer -Filter {pwdLastSet -lt $start_date} ‘
 -Properties pwdLastSet
If the -Delete switch was specified, delete the object
if ($Delete)
{
 foreach ($computer in $objects)
 {
 Remove-ADComputer $computer -Confirm:$true
 }
}
else
{
 # If the -Disable switch was specified, disable the object
 if ($Disable)
 {
 foreach ($computer in $objects)
 {
 Set-ADComputer $computer -Enabled $false
 }
 }
 # If the -Move switch was specified, move the computer to
 # the target OU
 if ($Move.Length -gt 0)
 {
 foreach ($computer in $objects)
 {
 Move-ADObject $computer -TargetPath $Move
 }
 }

 # If no switches were used, print a list of stale computers

 if ($Disable -ne $true -and $Move.Length -eq 0)
 {
 $objects | ft Name, pwdLastSet
 }
}

Manage Organizational Units
OUs are cornerstone objects in your AD domain. They provide your
directory with some much-needed structure to manage the vast number of
objects that it will surely collect over the years. However, another object
type provides similar functionality, and because of that there has been
some confusion over the years. Container objects can also be used to
organization your directory. A few container objects are created by
default in an AD domain. In fact, in a default installation, all of the top-
level objects are containers. Only one object is an OU, and that's the DC's
OU. The primary difference between an OU and a container, however, is
subtle. Containers can't have GPOs attached to them. You can attach a
GPO at a higher level and have it applied downstream to a container, but
you can't attach the GPO directly to the container itself. Because of this,
many organizations choose not to use the default locations for the user
and computer objects because they're both containers.

But in their truest sense, OUs and containers both are designed to be
parent objects. This means they were designed to hold other objects. This
doesn't mean that only an OU or a container can have child objects—any
object can potentially be a parent for child objects as long as the AD
schema specifies that it's okay to do so. But OUs and containers are
different from other parent objects, in that their sole purpose is to be
parents.

Build Organizational Unit Structures
There are many philosophies regarding how an OU structure should be
configured. In working with dozens of clients over the years, I (Ken)

think I've seen just about every model in existence. Back in May 2008, I
wrote an article for TechNet Magazine called “Designing OU Structures
that Work” (http://technet.microsoft.com/en-
us/magazine/2008.05.oudesign.aspx). In this article, I analyzed a few
different OU design models and laid out the good and the bad. One of the
points that I made up front in the article was that a poorly planned OU
structure tends to take on a life of its own. I've seen this truth manifested
time and time again. If your OU structure has multiple admins dipping
their hands in it, and if it has little actual structure, then it will surely get
out of hand. And when it does, that dramatically affects the management
of the structure and even the management of the domain. Therefore, the
first rule in managing OUs is to make sure your model is planned
appropriately for your business.

Creating an Organizational Unit
The AD module provides a series of easy-to-use cmdlets for working with
OUs in AD. Similar to other cmdlets in the AD module, the OU cmdlets
are scoped to only work with OU objects themselves, so there's no need to
specify object types when creating the OU objects. To create OU objects,
you can use the New-ADOrganizationalUnit cmdlet. You can call this cmdlet
with the name of the OU that you want to create, and it will create the OU
in the top level of the domain. The following example creates the Sales
OU at the root of the current domain:
New-ADOrganizationalUnit “Sales”

It's a more likely scenario, though, that you'll be creating OUs that
reside at places other than the top of the OU structure. To add an OU at a
different level of the structure, you can specify the Path parameter in the
New-ADOrganizationalUnit cmdlet. When you use this parameter, enter the DN
of the OU's parent object. The following example creates the Sales OU
inside the Departments OU in contoso.com:
New-ADOrganizationalUnit “Sales” -Path
 “ou=Departments,dc=contoso,dc=com”

http://technet.microsoft.com/en-us/magazine/2008.05.oudesign.aspx

Removing an Organizational Unit
When removing OUs, you can use the Remove-ADOrganizationalUnit cmdlet.
This cmdlet removes the OU that you specify as its first positional
parameter (the Identity parameter). If your OU isn't configured for
protection from accidental deletion (discussed later in this chapter), the
following command will delete the OU that you specify:
Remove-ADOrganizationalUnit
 “ou=Sales,ou=departments,dc=contoso,dc=com”

If there are child objects in the OU, you'll receive an error when
running the previous command. By default, the Remove-ADOrganizationalUnit
cmdlet isn't recursive, so objects within the OU are left intact. If you
want to delete the OU and all of the objects under it, you can specify the
Recursive switch in the command. The following example demonstrates
this:
Remove-ADOrganizationalUnit
 “ou=Sales,ou=departments,dc=contoso,dc=com” -Recursive

Modify Organizational Unit Objects
After your OU structure is planned and built, the work doesn't stop. As
you maintain AD over time, it becomes necessary to revisit the basics and
ensure that your OUs are necessary and well maintained. So, you'll want
to modify your OUs to keep their properties current and ensure that there
is ownership and protection of that OU.

Modifying the Properties of an Organizational Unit
In addition to creating and removing OUs, the AD module provides the
Set-ADOrganizationalUnit cmdlet for modifying an OU's properties. We
always recommend that when you create an OU, you should always fill
out two properties: Description and ManagedBy. These two properties tell you
who created the OU and what the OU is for. The following example
configures the Description attribute for the Departments OU:

Set-ADOrganizationalUnit “ou=Departments,dc=contoso,dc=com”
 -Description “Department-level OUs”

Assigning Someone as an OU Manager
As mentioned in the previous section, we recommend that you not only
add a description to your OUs, but also specify the OU manager. If you
do this, then you have a place to direct any questions about the contents
or permissions assigned to the OU. Also, this gives you a single touch-
point if you find stale accounts in that OU or accounts that are out of
compliance with your policies.

Adding a manager to an OU is a two-step process. The first step is to
connect to AD and bind to the user object of the person who will be the
manager. The next example searches on the samAccountName (the NT-style
logon name) attribute of the account and places that result in the $user
variable.

After you have a representation of the user object, you can call the Set-
ADOrganizationalUnit cmdlet for the OU on which you want to set the
manager. To configure the manager, you set the ManagedBy attribute to be
the user object gathered in the first step. An example of the commands
that perform these steps is shown here:
PS C:\> $user = Get-ADUser -Filter {samAccountName -eq “nora”}

PS C:\> Set-ADOrganizationalUnit
 “ou=Departments,dc=contoso,dc=com” -ManagedBy $user

Preventing an OU from Being Deleted Accidently
Have you ever witnessed an AD administrator deleting an OU full of
objects and realizing what they've done after the deletion was underway?
I (Ken) had a client a number of years ago who accidently deleted one of
their AD-integrated DNS zones, which happened to contain thousands of
manually registered DNS records for UNIX servers. When we attempted
to recover the data, we found that no one knew the Directory Services
Restore Mode password on the DC's backup image! With no backups and

a zone full of DNS records on the line, we began to panic. As we walked
down to the desk of another AD administrator, we learned that by divine
intervention, the other administrator had left his DNS MMC console open
and displaying the data for the zone that was just deleted. Fortunately, he
hadn't yet clicked the Refresh button. There before us were thousands
upon thousands of DNS records that had just been deleted but were
cached in the list box control in the MMC. With great caution, we used
the export function in the MMC to export the DNS records to a text file,
all the while praying that the process wouldn't crash. As we opened the
text file and viewed its glorious contents, we all breathed a sigh of relief,
knowing that we got through this one by the skin of our teeth. I spent the
rest of the evening writing a script to parse the exported file and feed the
contents into thousands of DNSCMD.EXE commands to re-create the DNS
records one by one. That was the day that I truly fell in love with
scripting.

Our job wouldn't have been this nerve-wrecking on that day if the next
feature had been included in AD early on. So, I was very excited to see
that Windows Server 2008 introduced the ability to prevent people from
deleting objects by accident. This feature is manifested by a check box in
the Object tab of the object's Properties dialog in the Active Directory
Users and Computers tool (see Figure 7.4).

Figure 7.4 The Protect Object From Accidental Deletion setting

Although it's a new option in the user interface, this check box is
nothing more than a Deny permission on the Delete and Delete Subtree
operations for the object (see Figure 7.5).

Figure 7.5 Preventing accidental deletions involves nothing more than a
Deny ACE.

Fortunately, you don't have to edit the ACL for an AD object to turn
this setting on or off. Rather, the Set-ADOrganizationalUnit cmdlet provides a
parameter to control this setting. The parameter is called
ProtectedFromAccidentalDeletion, and you can toggle it on or off by setting it to
$true or $false. The following example turns off accidental deletion on an
OU:
Set-ADOrganizationalUnit “ou=Departments,dc=contoso,dc=com”
 -ProtectedFromAccidentalDeletion $false

When you turn off this setting, it doesn't affect the child objects in the
OU recursively. The result is that if you intend to delete an OU and all of
its child objects, you first have to go through each child object and
disable accidental-deletion prevention.

Chapter 8

Managing Group Policies

IN THIS CHAPTER, YOU WILL LEARN TO:
MANAGE GROUP POLICY SETTINGS

Create and Modify Policies
Use Advanced GPO Operations

MANAGE GROUP POLICY APPLICATION
Apply Group Policies
View Existing Policies

In Windows Server 2008 R2, you may use PowerShell to perform many
of the same tasks that you could previously perform only through the
graphical user interface, most commonly using the Group Policy
Management Console (GPMC). You can use the Group Policy PowerShell
cmdlets to perform the following tasks:

Create, remove, back up, and import Group Policy Objects (GPOs)
Create, update, and remove Group Policy links to any Active
Directory container: site, domain, or organizational unit (OU)
Configure permissions and inheritance flags on AD OUs and
domains
Update, retrieve, and remove Registry-based policy settings and the
Group Policy preferences Registry settings within a GPO
Create and edit starter GPOs

In order to use PowerShell to manage GPOs in your environment, you
must be running one of the following:

At least one Windows Server 2008 R2 domain controller

At least one Windows Server 2008 R2 member server (you must
manually install the GPMC)
At least one Windows 7 workstation with the Remote Server
Administration Tools (RSAT) installed

In addition, you'll need to issue the following command from the
PowerShell console prior to running any GPO-related PowerShell
cmdlets: import-module grouppolicy. After you've imported the Group Policy
module into PowerShell, you can obtain a full list of the GPO-related
PowerShell cmdlets by running the following command: get-command –module
grouppolicy.

Manage Group Policy Settings
In this section, we'll discuss various scenarios around managing GPO
settings within AD. We'll begin with a discussion of how to create and
modify GPOs, including steps needed to automate creating and copying
GPOs, working with starter GPOs, and modifying and removing GPOs.

When designing your Group Policy placement strategy, the most
important result is that your GPO design meets the business requirements
as defined by your organization. To make sure this happens, you need to
understand the settings the business requires to be deployed to user and
computer objects, as well as any additional requirements the business
may have, such as specific settings that should be enforced within a
particular scope or for a particular group of computers or users based on
location or job role. When you've determined these requirements, you can
define one or more GPOs that may be linked at one or more levels within
your AD structure.

After we've gone over the steps needed to create and remove GPOs,
we'll examine the process of creating Fine-Grained Password Policies
(FGPP) in Windows Server 2008 and higher. FGPP was introduced in
Windows Server 2008 as a way to apply more than one password policy

to user, computer, and group objects within a single AD domain.

Create and Modify Policies
We'll begin with a discussion of how to create and modify GPOs within
an AD domain or forest. Each AD domain ships with two default GPOs:
the Default Domain Policy, which is linked at the domain level and
contains default settings for password and account-lockout policies; and
the Default Domain Controller Policy, which is linked to the Domain
Controllers OU within each domain. In order to customize the
configuration of user and computer objects, you can modify an existing
GPO or create one or more new ones that may be linked at the site,
domain, or OU level.

We'll also examine a new Group Policy feature that was introduced in
Windows Server 2008: the starter GPO. Starter GPOs provide the ability
for administrators to create a collection of administrative template
settings within a single GPO. Any new GPOs that are created on the basis
of a starter GPO receive all the settings configured in the starter GPO,
although these starter settings may be modified or removed after the GPO
has been created.

Creating a Group Policy Object
When you've determined your Group Policy placement and settings
strategy, you then need to create and link the GPOs for each domain. You
can create and link the GPOs in a single operation, or you can create the
GPOs first and link them to the appropriate container (site, domain, OU)
later on. To create a new GPO, you can use the syntax shown in the
following example:
New-GPO -Name “Common User Settings” -Comment “Top-level GPO
containing common GPO settings” -Domain contoso.com

If you omit the –domain parameter, the GPO is created in the same
domain as the user account being used to create the GPO. You can also

use the –Server parameter to target a specific server on which the GPO
should be created.

The –StarterGPOGuid and –StarterGPOName parameters specify the Globally
Unique Identifier (GUID) and name of a starter GPO whose settings are
used to initially populate the new GPO. We'll cover the steps needed to
create a starter GPO later in the chapter.

Notice that the example in this section will only create the GPO; later
in the chapter, you'll see how to create, update, and delete links to GPOs
in your environment.

Creating a Copy of a Group Policy Object
You can use the Copy-GPO cmdlet to make a copy of a GPO, either within a
single domain or across a domain trust within an AD forest. In the
simplest case, you're simply creating a second policy object with a new
name containing the same settings as the original. In this case, you use
the following syntax:
Copy-GPO -SourceName “GPO1” –SourceDomain contoso.com -TargetName
“GPO2” –TargetDomain contoso.com -CopyACL -SourceDomainController
dc1.contoso.com -TargetDomainController dc7.contoso.com

As you can see, this cmdlet takes the GPO1 GPO and uses it to create
the GPO2 destination GPO containing the same settings. (If a GPO called
GPO2 already existed in the target domain, the cmdlet would return an
error.) The –CopyACL parameter, as you may imagine, copies the Access
Control List (ACL) from the source GPO to the target GPO.

You can use the –SourceDomain and –TargetDomain switches to copy a GPO
from one domain to another; if you omit either or both of these switches,
they will default to the user's domain membership. Both of these switches
require the fully qualified domain name (FQDN) of the source and target
domains being specified. Similarly, the –SourceDomainController and –
TargetDomainController parameters can be used to specify which DCs should
be used as the source and target for the copy operation: if you omit either
or both of these, the PDC Emulator of the domain in question is used.

When copying a GPO from one domain to another, you may need to
transform the values of certain settings rather than leaving all the original
settings intact. For example, you may need to change a file server path
from \\SERVER1\HomeDirectories to \\SERVER3\HomeDirectories, or to change one
administrative group to another. In order to perform this task, you'll need
to create a migration table.

A migration table is a file that maps domain-specific references such as
users, groups, computers, and UNC paths in a source GPO to new values
specified in the destination GPO. A migration table consists of one or
more mapping entries that consist of a source reference and its associated
destination reference. If you specify a migration table when performing
an import or copy, each reference to the source entry in the source GPO is
replaced with the destination entry when writing the settings into the
destination GPO. These transformations can even apply to entries in the
GPO's ACL when copying a GPO with the –CopyACL entry; the migration
table transforms entries in the Discretionary Access Control List (DACL)
on the GPO, as well as the DACLs on any software installation settings
within the GPO.

Within a GPO, the following entries may contain DACL settings that
can be modified using a migration table:

User rights assignments
Restricted groups
Services
File system
Registry
Advanced folder-redirection policies
DACL entries on the GPO
DACL entries on software installation objects

You can also transform Universal Naming Convention (UNC) paths in
any of the following settings:

Folder-redirection policies.

Software installation policies (for software distribution points).
Location of scripts that are stored outside the GPO. (Script
themselves aren't copied as part of the GPO copy operation unless
the script is stored inside the source GPO.)

Although you can specify a migration table when copying a GPO by
using the –MigrationTable <path to file> parameter, you must create the
migration table itself using the GPMC. You can specify entries in the
migration table manually, or you can autopopulate the migration table by
scanning a source GPO for DACL and UNC entries.

You can see an example of a partially populated migration table in
Figure 8.1:

Figure 8.1 GPMC Migration Table

Removing a Group Policy Object
To remove a GPO from an AD domain, you can use the Remove-GPO cmdlet
as shown in the following example. You can identify the GPO that needs
to be removed by specifying its display name or its GUID within the
domain. You can optionally specify the domain containing the GPO that
needs to be removed; if you don't specify the domain name, PowerShell
will use the domain to which the user account running the cmdlet
belongs:
Remove-GPO -Name TestGPO –Domain east.contoso.com

Modifying a Group Policy Object's Settings
Beginning in Windows Server 2008 R2, you can automate the
modification of certain settings within a GPO. In previous versions of
Windows, even though you had the ability to script the creation, deletion,
linking, and unlinking of GPOs, actually modifying the settings of GPOs
could only occur using a graphical user interface. With the PowerShell
cmdlets in Windows Server 2008 R2 and Windows 7, you can now
automate the creation of the following types of Group Policy settings:

Registry preference items, under either the Computer Configuration
or User Configuration section of a GPO
Registry-based policy settings, also under either the Computer
Configuration or User Configuration section of a GPO

Group Policy Preferences (GPPs) includes a number of advanced Group
Policy features for clients that support their use. One of these is the
ability to automate the creation of Registry keys and values on client
computers whenever the GPO is refreshed; this allows AD administrators
to use GPOs to automate aspects of configuration management on large
numbers of client computers.

The Set-GPPrefRegistryValue cmdlet lets you manage Registry preference
items within an existing AD GPO. For example, you can create a
particular Registry key or value on any client that receives a particular

GPO, as well as update or delete a Registry key or value on all affected
clients. You can see how a Registry preference item is managed in the
GPMC in Figure 8.2.

Figure 8.2 Managing Registry preference Items

You can use the Set-GPPrefRegistryValue cmdlet to manage Registry
preference items in either the Computer Configuration or User
Configuration section of a GPO, and you can configure a Registry
preference item to pertain to either a Registry key or a Registry value.

In order to create a new Registry preference item, you must specify the
following parameters:

The GPO to which the Registry preference item should be added.
You can specify the GPO by its name or by its GUID.
The –Context parameter, to indicate whether the Registry preference

item should be added to the User Configuration or Computer
Configuration section of the GPO.
The –Action parameter, to define whether this Registry preference
item should create, replace, update, or delete a Registry key or value
on the client computers.

The available options for the –Action parameter are as follows:
Create configures a Registry preferences item that creates a new
Registry key or value.
Replace configures a Registry preferences item that replaces an
existing Registry key or value with a new one.
Update configures a Registry preferences item that updates an existing
Registry key or value.
Delete configures a Registry preferences item that deletes an existing
Registry key or value.

You can configure a Registry preference item for either a Registry key
or a Registry value. To configure a Registry key, you specify the –Key
parameter only. To configure a Registry value, you specify the following
parameters:

Key. For example: HKEY_CURRENT_USER\Control Panel\Colors. You can specify
a Registry key in any of the following hives:

HKEY_CLASSES_ROOT (HKCR)
HKEY_CURRENT_USER (HKCU)
HKEY_LOCAL_MACHINE (HKLM)
HKEY_USERS (HKU)
HKEY_CURRENT_CONFIG (HKCC)

ValueName. For example: ActiveWindow.
Type indicates the data type of the Registry value. You can specify
any of the following:

String

ExpandString

Binary

DWord

MultiString

Qword

Value indicates the contents of the Registry value.
When you're creating a Registry preference item via PowerShell, you

should be aware of two additional parameters:
Disable If you set this to $true, the Registry preference item is created in
a disabled state, which means it doesn't modify any client when the
GPO containing the item is applied to any client. It's important to note
that this doesn't disable any existing Registry preference items within
the GPO; rather, it creates a new Registry preference item in a
disabled state. (If you need to disable an existing Registry preference
item, you must do so using the GPMC graphical tool.)
Order This parameter specifies the order in which the Registry
preference item is processed, relative to other Registry preference
items configured on the GPO. If you use a parameter of –Order 1, for
example, this item will be the first item configured.

The following example creates a Registry preference item within an
existing GPO that creates a new Registry key on client computers:
Set-GPPrefRegistryValue -Name TestGPO -Context computer -Action
Create -Key “HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\ExampleKey\
ExampleKey2”

In addition to Registry preference items, you can also configure
Registry-based policies using the Set-GPRegistryValue cmdlet. You can see
the Policies and Preferences nodes visually in the GPMC shown in Figure
8.3.

Figure 8.3 Viewing the Group Policy Management Console

Similar to Registry preference items, Registry-based policies can be
configured under either the Computer Configuration or User
Configuration node within a GPO. Unlike Registry preference items,
Registry-based policy settings can only modify items in the following
Registry hives:

HKLM for settings in the Computer Configuration node of Group
Policy
HKCU for settings in the User Configuration node

You can specify the GPO that you wish to modify by its name or GUID,
or by using the Get-GPO cmdlet and piping the result to the Set-GPRegistryValue
cmdlet. By default, when a GPO applies a Registry-based policy setting
on a client computer, any existing values under that key are deleted
before the policy-based setting is applied. You can override this behavior
by using the –Additive parameter.

Also, unlike Registry preference items, in the case of Registry-based
policy settings you can delete Registry values on a client by disabling the
policy setting using the –Disable parameter. If you specify a Registry key
to disable, all values under that key are removed—the key itself isn't
removed, and any subkeys (and values within those subkeys) also aren't
removed. If you specify a Registry value to disable, only the specific
value is removed from the Registry.

Note
If you want to remove a Registry-based policy setting from a GPO, but you
don't want to affect any existing Registry keys or values that have been
configured on the client, you should instead use the Remove-GPRegistryValue
cmdlet.

You specify the Registry key and value to set using the following
parameters:

-Key HKLM or -Key HKCU. For example: HKLM\Software\Policies\Microsoft\Windows
NT\NetBIOS.
Type specifies the data type of the Registry key being set; you can
specify any one of the following:

String

ExpandString

Binary

DWord

MultiString

Qword

ValueName specifies the name of the Registry value.
Value specifies the data for the Registry value being set. For String and
ExpandString data types, you can specify multiple values separated by
commas; for all other data types, you can only specify a single

value.
The following example uses the Set-GPRegistryValue cmdlet to set the

screen saver timeout in the Computer Configuration node of a GPO:
Set-GPRegistryValue -Name “Workstations” -key “HKCU\Software\
Policies\Microsoft\Windows\Control Panel\Desktop” -ValueName
ScreenSaveTimeOut -Type DWORD -value 600

Creating a GPO from a Security Template
In Windows Server 2003 and Windows Server 2008, you can use security
templates to configure one or more GPOs with dozens or even hundreds
of security settings in a single operation. You can use one of the
preconfigured security templates that ship with Windows, you can take
one of the preconfigured templates and tweak it to fit your organization's
needs, or even create a brand-new template from scratch using the
Security Templates MMC from the Windows administrative tools.

The predefined templates that ship with Windows include the
following:

Default security (Setup security.inf)—This template is created during
the installation of each computer and represents default security
settings such as default permissions on the system drive.
Domain controller default security (DC security.inf)—This template is
created when a server computer is promoted to DC status.
Compat*.inf (compatdc.inf, compatws.inf)—This is a basic security template
that provides the most open security model, primarily used to supply
backward compatibility for legacy software.
Secure*.inf (securedc.inf, securews.inf)—This template applies additional
security settings beyond the basic template, including locking down
LAN Manager and clock-skew settings.
Hisec*.inf (hisecdc.inf, hisecws.inf)—This template provides tighter
security measures than any others. Microsoft recommends that you
test all software and services for any compatibility issues prior to
deploying the high-security templates.

You can see an example of a configured security template in Figure 8.4:

Figure 8.4 Managing security templates

When you've selected and configured the security template that you
want to deploy via GPO, you can import it into a GPO by using the Group
Policy Editor in the GPMC, as follows:

1. Open the GPO you wish to modify in the Group Policy Editor.
2. Drill down to Computer Configuration → Policies → Windows
Settings → Security Settings.
3. Right-click the Security Settings node, and click Import Policy, as
shown in Figure 8.5.

Figure 8.5 Import Policy

Creating a Starter GPO
Windows Server 2008 R2 introduces a new feature called a starter GPO,
which is a progression from security templates that allows you to create a
GPO template that specifies not only security settings, but also settings
within Administrative Templates and other Group Policy nodes.

When you install the first 2008 R2 DC in a domain, you can open the
GPMC to create a number of default starter GPOs, as shown in Figure
8.6, or you can use the New-GPStarterGPO PowerShell cmdlet.

Figure 8.6 Managing starter GPOs

You can specify the display name of the starter GPO by using the –Name
<Name> parameter and the domain that the starter GPO should be created in
by using the –Domain <Domain Name> parameter. (If you omit the –Domain
parameter, the cmdlet uses the domain of the user that's running the
PowerShell cmdlet.) You can also enter a description of the starter GPO
by using the –Comment parameter.

For example, the following example creates a starter GPO called
Default Corporate Settings in the contoso.com domain:
New-GPStarterGPO –Name ‘Default Corporate Settings’ –Domain
contoso.com

When you've created the starter GPO and configured the necessary
settings in it, any GPO that you create based on the starter GPO will
receive all the settings configured in the starter GPO. The New-GPO
command includes the –StarterGPOGUID and –StarterGPOName parameters, which
allow you to specify the starter GPO on the basis of its GUID or its
display name. Figure 8.7 shows a partially configured starter GPO in the
GPMC.

Figure 8.7 Starter GPO in the GPMC

Use Advanced GPO Operations
In this section, we'll discuss additional operations that you'll need to
perform when administering GPOs in an AD environment. We'll begin by
describing how to move one or more GPOs from a testing environment
into a production environment, which allows you to test Group Policy
settings in an isolated environment and then transfer them to your
production domains after you've ensured that they won't have any adverse
effects on your user and computer population.

Next, we'll describe the steps needed to create, configure, and manage
FGPPs in order to enable multiple password and account-lockout policies
within a single AD domain. This feature, introduced in Windows Server
2008, lets an administrator designate one or more users or groups of users
to receive a different password and/or account-lockout policy than are
configured as the default domain policies. We'll discuss the steps
required to create and configure an FGPP, to link the FGPP to a user or
group object, and to determine the effective FGPP that applies to a

particular user object within a domain.

Moving Group Policies Between a Lab and a
Production Environment
When you're configuring GPOs in your environment, if possible it's
recommended that you set up an isolated test environment that mimics
the configuration and behavior of your production domains and forests,
so you can test new and updated GPOs against unexpected behavior when
applied to client computers. After you're satisfied with the behavior of
the new or updated GPOs in your test environment, you can then copy
them into your production environment.

To ensure that the GPOs deployed in production are identical to those
that were deployed in the test environment, you can use the Backup-GPO and
Import-GPO PowerShell cmdlets to automate the process.

The Backup-GPO cmdlet can be used to back up a single GPO or all GPOs
configured in a domain. To back up a single GPO, you can specify the
GPO by name using the –Name parameter or by GUID using the –GUID
parameter. Alternately, you can use the –All parameter to back up all
GPOs in the domain.

In addition to specifying which GPO or GPOs to back up, the Backup-GPO
cmdlet also requires you to specify the –Path parameter, which indicates
the directory that should contain the backups. This can be a local
directory such as C:\Backups or a network path such as \\SERVER1\Docs. (In
either case, the destination path must already exist or the Backup-GPO cmdlet
will throw an error; the cmdlet won't create the path for you if it doesn't
exist.)

The following example backs up all GPOs in a domain to the C:\Backups
directory on the local hard drive:
Backup-GPO –All –Path C:\Backups

The Backup-GPO cmdlet creates a folder with the same name as the GUID
of the GPO, as shown in Figure 8.8.

Figure 8.8 Managing GPO backups

After you've backed up the desired GPOs in the source environment,
you use the Import-GPO cmdlet in the target environment to import the GPO
backups into production. You can tell the Import-GPO cmdlet which backup
to import using either the –BackupID parameter, which specifies the GUID
of the desired backup, or the –BackupGPOName parameter, which specifies the
display name of the desired backup. You also need to specify the –Path
parameter indicating the folder containing the backup files.

You specify the GPO into which the settings should be imported by
specifying the –TargetName parameter followed by the display name of the
target GPO. If the target GPO doesn't yet exist, you can use the –
CreateIfNeeded parameter to create a GPO with the same display name as the
one specified in the backup.

As in the “Creating a Copy of a Group Policy Object” section, you can
specify a migration table when importing a GPO from a backup to

translate environment-specific configuration items such as server names,
group names, and the like. Just as with the Copy-GPO cmdlet, you do so
using the –MigrationTable parameter followed by the path to the migration
table file you wish to use.

The following example imports a GPO using the GUID of the backup,
specifying the target name of the GPO into which the settings should be
imported:
Import-GPO -BackupId B3529175-F5BA-367A-2356-A43CBCA5A421
-TargetName MarketingGPO -path c:\backups

Defining a Fine-Grained Password Policy
Prior to Windows Server 2008, AD imposed a limitation that only one
password and account-lockout policy could be configured within a single
AD domain. If an organization had a business or security requirement to
configure more than one password or account-lockout policy, it was
forced to deploy a multidomain forest, which resulted in significant
administrative overhead to fulfill this requirement.

Beginning in Windows Server 2008, AD introduces the Fine-Grained
Password Policy (FGPP) feature, which allows you to create multiple
password and account-lockout policies within a single domain and apply
them to individual users or groups of users in that domain. (There is not,
however, a mechanism to link an FGPP to an OU; an FGPP can be linked
to user or group objects only.)

FGPPs exist in a special container within each domain located under
CN=Password Settings Container,CN=System in the domain naming context
(dc=contoso,dc=com, for example.) You can create each FGPP object in the
ADSIEdit MMC console or at the command prompt using Windows
PowerShell.

T h e New-ADFineGrainedPasswordPolicy cmdlet accepts the following
parameters. Some of these are optional, depending on how the FGPP is to
be configured:

Name defines the CN of the policy DomainUsersPSO.

Precedence defines the precedence assigned to each FGPP. If multiple
FGPPs are applied to a user, the Precedence attribute helps to
determine which one should apply.
-ComplexityEnabled accepts a $true or $false value to indicate whether the
FGPP should require a complex password. The password-complexity
rules for an FGPP are the same as the Windows default, where a
complex password must have a minimum of six characters and a mix
of uppercase, lowercase, and non-alphanumeric characters.
-Description denotes the description field for the FGPP.
-DisplayName defines the display name of the FGPP.
-LockoutDuration defines how long an account should be locked out
when the bad-password threshold has been exceeded. For example,
to define a lockout duration of 12 hours, you specify “0.12:00:00”.
-LockoutObservationWindow specifies the duration of time during which
exceeding the bad-password threshold will result in locking out the
account. For example, a LockoutObservationWindow of 15 minutes means
that X number of bad passwords entered within one 15-minute span
will result in an account lockout. This attribute accepts the same
format as LockoutDuration, where “0.00:15:00” indicates a value of 15
minutes.
-LockoutThreshold indicates the number of bad password attempts
within a given observation window that constitute an account
lockout. This parameter takes a simple numeric argument like 10.
-MaxPasswordAge indicates the maximum age of a password. A value of
“60.00:00:00” requires users to change their passwords every 60 days.
-MinPasswordAge indicates the minimum age of a password before it can
be changed again. A value of “1.00:00:00” requires users to wait at
least one day after changing their password before they can change it
again.
-MinPasswordLength indicates the minimum password length for this
FGPP, such as eight characters.

-PasswordHistoryCount indicates the number of unique passwords a user
must enter when changing their password, before a previous
password can be reused.
-ReversibleEncryptionEnabled takes a value of $true or $false to indicate
whether passwords should be stored in the directory using reversible
encryption.

The following example demonstrates how to create an FGPP with a
number of these settings configured (this is one PowerShell command
that should be entered on a single line):
New-ADFineGrainedPasswordPolicy -Name “Administrative Users PSO”
-Precedence 1 -ComplexityEnabled $true -Description “Strong
Password Policy for Administrative Accounts”-DisplayName
“Administrative Users PSO” -LockoutDuration “0.15:00:00”
-LockoutObservationWindow “0.00:15:00” -LockoutThreshold
30 -MaxPasswordAge “30.00:00:00” -MinPasswordAge
“5.00:00:00” -MinPasswordLength 12 -PasswordHistoryCount 24
-ReversibleEncryptionEnabled $false

When you've created one or more FGPPs, you must link each FGPP to
at least one user or group in order for it to take effect. You do so using
t h e Add-ADFineGrainedPasswordPolicy PowerShell cmdlet, which uses the –
Subjects parameter to define one or more users or groups that the FGPP
should apply to. The following example applies the FGPP you just
created to a specific number of groups and user objects:
Add-ADFineGrainedPasswordPolicy “Administrative Users PSO”
–Subjects “Domain Admins”, “Enterprise Admins”, “Schema Admins”,
CONTOSO\arose

FGPP Priority and Conflict Resolution
Because of the flexibility available to you when configuring and applying
FGPPs, you may wind up in a situation where multiple FGPPs could
potentially apply to a single user. A user may belong to multiple security
groups, each one of which has an FGPP associated with it, or the user
may have multiple FGPPs linked to their account. In a situation like this,
which FGPP will take precedence on the user's account?

When you're examining multiple individual FGPPs to determine which

one will apply, it's important to remember that FGPPs can be applied in
one of two ways:

Directly to a user object
To a group object of which one or more users are members

If an FGPP has been assigned directly to a user object, as well as to a
group object of which the user is a member, the FGPP that was assigned
directly to the user (in other words, the one that was assigned more
specifically) takes precedence. So if user aruth is a member of the
Sales&Marketing group, and two FGPPs are assigned to the
Sales&Marketing group and to aruth's user account directly, the FGPP
assigned directly to aruth's account is the one that applies.

Additionally, each FGPP possesses two attributes that are used to
determine which one will take precedence in a case where a tie-breaker is
required:

Priority This value is assigned by the administrator when the FGPP is
created. It can have a value that is any whole number from 1 to 100.
When you're assigning priorities to FGPPs, an FGPP with a lower
number takes precedence over an FGPP that is assigned a precedence
with a higher number: an FGPP with Priority of 1 takes precedence
over an FGPP with a Priority of 2; an FGPP with Priority 10 takes
precedence over an FGPP of Priority 99, and so on. These numbers are
only interesting in relation to each other—it doesn't matter if you use
consecutive numbering (1, 2, 3, 4…) or some other scheme (5, 10, 15,
20…), as long as the FGPP that should take precedence is configured
with the lower-numbered Priority.
GUID Each AD object is assigned a GUID that is unique to the object
across an entire AD forest and doesn't change for the lifetime of the
object within the forest. In the extreme case where more than one
FGPP applies to the same user and has the same priority, the object
with the lower GUID takes precedence. (A GUID of 12345 takes
precedence over a GUID of 23456.) Because each object within an AD
forest possesses a unique GUID, GUID creates a final tie-breaker to

determine which FGPP should apply to a given user.
You can see this tie-breaker logic illustrated in Figure 8.9—although

perhaps the most important lesson to be learned here is that it's usually
best to apply the KISS principle to the creation of FGPPs: Keep It
Simple, Silly!

Figure 8.9 Determining FGPP precedence

Determining Which Password Policy Applies to a
User Account
As you saw in the previous section, it's possible for multiple FGPPs to be

linked to a given user, either by linking the FGPP directly to the user or
by linking an FGPP to one or more groups of which the user is a member.

For troubleshooting purposes, it's helpful to be able to quickly
determine which FGPP applies to a particular user in AD. You can easily
accomplish this using the Get-ADUserResultantPasswordPolicy cmdlet, followed
by the samAccountName of the user in question. The following example
retrieves the effective password policy that applies to the CONTOSO\arose user
object:
Get-ADUserResultantPasswordPolicy arose

Manage Group Policy Application
Now that you've learned how to create various configurations of GPOs,
including GPOs, starter GPOs, security templates, and FGPPs, the next
step is to determine how these GPOs will be deployed throughout your
organization. A GPO can be linked to one or more AD containers—a site,
a domain, or an OU. By default, linking a GPO to one of these containers
causes that GPO to apply to all user and computer objects that exist
within that container, although you can customize this behavior using
WMI filters and/or security group filtering.

In this part of the chapter, we'll examine the steps needed to automate
the application of GPOs in an AD environment, including linking GPOs
to one or more AD containers, customizing the behavior of Group Policy
applications, and viewing and reporting on the configuration of one or
more GPOs in the AD environment.

Apply Group Policies
In this section, we'll examine the steps needed to link a GPO to one or
more containers in an AD environment. You'll also learn how to
customize this behavior so that a particular GPO will only apply to a
subset of users or groups within a container, either by virtue of the

object's security group membership or on the basis of a WMI filter that
tests against operating system, service pack level, available hard drive
space, or any number of other characteristics.

Linking a GPO to an OU, a Site, or a Domain
After you've created a GPO, you need to determine where the GPO should
apply. You can link a GPO to the following locations in AD:

Domain
Site
OU

You can use the New-GPLink PowerShell cmdlet to specify which container
the GPO should be linked to; you use the –Target parameter to specify the
link target, followed by the distinguished name (DN) of the container.
You can specify the GPO to be linked by using either the –Name or –GUID
parameter; the -Name parameter takes the GPO's display name as an
argument, whereas the –GUID parameter takes the GUID of the GPO.

When creating the GPO link, you can specify the following optional
parameters:

-Enforced ensures that the settings in this GPO won't be overridden by
settings configured in a GPO linked to a lower-level container.
-LinkEnabled defaults to Yes, but you have the option to configure a new
link as disabled by setting this to No. Setting the link to disabled
means the settings configured in the GPO won't apply to users in the
container until you enable the GPO link at a later time.
-Order determines what order GPOs will apply in, if more than one
GPO is linked to the same container. Because GPOs operate on a
last-writer-wins model by default, GPOs that are applied later will
override GPOs that are applied earlier. GPOs with a higher (larger) –
Order number will be applied before GPOs with a lower (smaller) –
Order number, so that a GPO configured with –Order 5 will be applied
before a GPO link configured with –Order 1.

The following example demonstrates how to link a GPO to the domain
root of the contoso.com domain:
New-GPLink –Name ‘Default Contoso Domain Settings’ –LinkEnabled
Yes –Target dc=contoso,dc=com

Applying Multiple GPOS
In an AD environment, it's common for more than one GPO to apply to a given
user/computer combination. In many cases, there will be settings that conflict
between these multiple GPOs, and as an administrator you'll need to determine
which settings should take precedence. By default, Group Policy operates on a last-
writer-wins model, which means the final GPO that applies to a user or computer is
the one whose settings will take precedence.
In an AD environment, GPOs are applied in the following order:

1. The local GPO and its settings are applied to the user and the computer.
2. Any GPOs linked to the AD site containing the user and computer (if different)
are processed. If multiple GPOs are linked to the AD site, an administrator can
specify the order in which these GPOs should apply from first to last.
3. Any GPOs linked to the AD domain containing the user and computer (if
different) are processed. If multiple GPOs are linked to the AD domain, an
administrator can specify the order in which these GPOs should apply from first to
last.
4. Any GPOs linked to the AD OU containing the user and computer (if different)
are processed. In an environment where multiple GPOs have been nested, GPOs
linked to each OU are processed in order: first all GPOs linked to a grandparent
OU, followed by all GPOs linked to a parent OU, followed by all GPOs linked to a
child OU, and so on. If multiple GPOs are linked to any level of the AD OU
structure, an administrator can specify the order in which these GPOs should apply
from first to last.

There are some notable exceptions to this default processing order: specifically,
the password (length, complexity, minimum/maximum age) and account-lockout
policies that apply to the user are the ones that are linked to the AD domain. (This
will be the case unless FGPPs have been configured, as discussed earlier in the
chapter.)
Here's a graphical depiction of the default GPO processing order:

Creating a Custom Filter for a GPO
By default, a GPO linked to a container (domain, site, or OU) applies to
all objects held within that container. In order to specify at a more
granular level which objects the GPO should apply to, you can create a

WMI filter and apply it to the GPO in question. After you've applied a
WMI filter to a particular GPO, only computers that meet the criteria of
the filter will have the GPO applied.

For example, you can create a WMI filter that requires that a GPO
apply only to computers of a particular operating system, that possess a
particular hardware configuration, or that have a specific piece of
software installed. The following WMI filter searches for computers that
have at least 100 MB free on their C: drive:
Select * from Win32_LogicalDisk where FreeSpace > 104857600 AND
Caption = “C:”

You can see another example here, which searches for computers that
are running Windows Vista Service Pack 1 only:
Select * FROM Win32_OperatingSystem WHERE Caption=“Microsoft
Windows Vista” AND CSDVersion=“Service Pack 1”

In order to link a WMI filter to a GPO, you need to use the GPMC; at
present, there is no way to automate linking a WMI filter to a GPO.

First you create the WMI filter in the WMI Filters node, as shown in
Figure 8.10.

Figure 8.10 Creating a WMI filter

When the WMI filter has been created, you can link it to a GPO by
using the WMI Filtering drop-down box on the GPO's Scope tab, as
shown in Figure 8.11.

Figure 8.11 Linking a WMI filter

Because evaluating WMI filters can be a processor-heavy operation,
you should thoroughly test any filters that you intend to deploy and use

them only on an exception basis if you've deployed numerous GPOs in
your organization.

Applying a GPO to a Subset of Objects in an OU
In addition to using WMI filters to restrict the application of a GPO, you
can also use security group filtering to restrict the objects to which a
GPO applies. By default, the Authenticated Users group in AD is granted
the Read and Apply Group Policy on each GPO. You can restrict the
security settings on a GPO in one of two ways:

Remove the default Authenticated Users access control entry (ACE)
on the GPO, and explicitly grant the Read and Apply Group Policy
permissions to only those users and computers that should receive
the GPO settings.
Leave the default Authenticated Users ACE in place, and explicitly
deny the two required permissions to the specific users or groups
that should not receive the GPO settings.

You can modify the security settings on a GPO using the Set-GPPermissions
PowerShell cmdlet. You can modify the permissions for a single GPO by
specifying the –Name or –GUID parameter. After you've specified the GPO
that you want to modify, you use the –PermissionLevel parameter with one of
the following values:

GPORead—Read permission on the GPO.
GPOApply—Apply Group Policy permissions on the GPO.
GPOEdit—Edit permission on the GPO.
GPOEditDeleteModifySecurity—Edit, Delete, and Modify Security
permissions on the GPO.
None—No permissions on the GPO.

In addition to the –PermissionLevel parameter that specifies the permission
you're configuring, you need to use the –TargetName and –TargetType
parameters to specify the user, computer, or group that should receive
that permission. –TargetName can be in any of the following formats:

arose

CONTOSO\arose

Domain Admins

CONTOSO\Domain Admins

COMPUTER3

CONTOSO\COMPUTER3

The –TargetType parameter needs to be specified and can be one of the
following values:

User

Computer

Group

Finally, you can use the –Replace parameter to specify whether any
existing permissions for the user, computer, or group should be replaced
if that permission already exists. For example, if you add the GpoRead
permission to a particular group and do not specify the –Replace parameter,
and the group has already been configured with the GpoEdit permission,
no changes will be made because the GpoEdit permission already confers
GpoRead. (The reverse doesn't apply, though: if the group has already
been assigned GpoRead and you add the GpoEdit permission, GpoEdit
will overwrite GpoRead because it's a higher permission level than what
already exists.) In the case of the –Replace switch, if you add the GpoRead
permission to a group that already has GpoEdit, and you specify the –
Replace switch, then the GpoEdit permission will be replaced by the
GpoRead permission.

The following example adds the GpoEdit permission to a GPO for a
specific user in AD:
Set-GPPermissions –Name ‘Marketing GPO’ –PermissionLevel GPOEdit
–TargetName CONTOSO\arose –TargetType USER

The next command assigns the GpoRead permission on the same GPO
to the same user. Because this command doesn't use the –Replace
parameter, no changes will actually be made to the GPO, because the

GpoEdit permission level already confers Read permission on the GPO:
Set-GPPermissions –Name ‘Marketing GPO’ –PermissionLevel GPORead
–TargetName CONTOSO\arose –TargetType USER

Next, you issue the same command using the –Replace parameter.
Because the –Replace parameter is specified, the GpoEdit permission will
be removed from CONTOSO\arose, and the GpoRead permission will be added
in its place:
Set-GPPermissions –Name ‘Marketing GPO’ –PermissionLevel GPOEdit
–Replace –TargetName CONTOSO\arose –TargetType USER

Preventing a Down-Level OU from Overriding a
GPO
By default, all GPOs use a last-writer-wins model when applying their
settings. Consider an example where a user and computer reside in the
ou=sales,ou=marketing,dc=contoso,dc=com OU. Let's assume that GPO1 is linked
to the ou=marketing,dc=contoso,dc=com OU, and GPO2 is linked to the
ou=sales,ou=marketing,dc=contoso,dc=com OU. The user in the Sales OU will
receive any settings configured in GPO1 first. If any individual settings
are specified in both GPO1 and GPO2, GPO2 will win on any individual
settings that conflict, but any settings from GPO1 that don't conflict with
GPO2 will still apply.

In order to prevent a lower-level OU from overriding parent OU GPO
settings, you can configure the GPO1 link to the Marketing OU with the –
Enforced parameter. In this case, the user in the Sales OU will receive
settings configured in GPO1 first. If any individual settings are specified
in both GPO1 and GPO2, GPO1 will win on any individual settings that
conflict, but any settings from GPO2 that don't conflict with GPO1 will
still apply. (Notice that this effectively reverses the default last-writer-
wins Group Policy model.)

To create a new GPO link using the –Enforced link, you can use the New-
GPLink cmdlet described earlier in this section. If you need to modify an
existing Group Policy link, you use the Set-GPLink cmdlet using the

following parameters:
-Name or –GUID to specify the name or GUID of the GPO
-Target to specify the DN of the container to which the GPO is linked
-Enforced to configure the existing GPO link as Enforced

The following example modifies an existing Group Policy link to use
the Enforced option:
Set-GPLink –Name ‘Marketing GPO’ –Target ‘ou=marketing,
dc=contoso,dc=com’ -Enforced

Applying the Enforce Setting at Multiple
Levels

As you've just seen, the use of the Enforce setting can prevent a GPO linked to a
lowerlevel OU from overriding settings that were configured by a GPO linked to a
higher-level OU. But what happens if you have a parent OU and a child OU, both of
which have GPOs linked to them that use the Enforce option? If you create a
grandchild OU and link a GPO to this new OU, which of the Enforced GPOs will
prevail in the case of any setting conflicts: the parent OU or the child OU?
You've already seen that normal GPO processing operates on a last-writer-wins
model: The settings from the parent OU's GPO will be applied first, then the settings
from the child OU's GPO, and then the settings from the grandchild OU's GPO;
whichever settings were written last are the ones that will take effect. When
Enforced is used, though, this model is reversed: whichever Enforced GPO is
applied first is the one that will prevail. In the example where the parent and child
OUs' GPOs are both configured using the Enforced option, any conflicting settings
between the parent, child, and grandchild GPOs will be settled in favor of the
highest GPO in the OU structure—the parent OU, in this case. You can see the
default precedence here:

You can see the behavior when multiple Enforced settings are in use here:

As is often the case when designing and applying GPOs, though, it's best not to
overuse exception settings like Enforced as described in this example, because
doing so creates confusion and difficulty in troubleshooting when clients receive (or
don't receive!) the GPO settings they are expecting.

View Existing Policies
In our final section, we'll examine the tasks required to view the settings
of GPOs you've configured in your environment. These can include
generating a simple report of one or more GPOs or starter GPOs in your

domain and generating a report of the effective policy settings that have
been applied to a particular user and computer in the environment. The
tasks outlined in this section are useful for maintaining documentation of
your GPOs, as well as for helping troubleshoot issues surrounding Group
Policy application for a particular user or computer that may be having
difficulties.

Creating a GPO Settings Report
When you've created and configured one or more GPOs, you can use the
Get-GPOReport PowerShell cmdlet to obtain a list of settings that have been
configured on those GPOs. You can specify the GPO or GPOs for which
you wish to generate a report by using the following parameters:

Get-GPOReport –Name <Display Name of the Starter GPO>

Get-GPOReport –GUID <GUID of the Starter GPO>

Get-GPOReport –ALL (retrieves a report on all GPOs in the domain)
The Get-GPOReport cmdlet can create output in either XML or HTML

format using the –ReportType parameter; you use the –Path parameter to
specify the folder and filename that the report should be saved as. You
can specify the –Domain parameter to specify the domain containing the
GPO that you wish to report on, if it isn't the domain that you're currently
logged onto.

Figure 8.12 provides an example of an HTML report generated by Get-
GPOReport.

Figure 8.12 HTML GPO report

Retrieving a List of All GPOs
In order to retrieve single starter GPO or a list of all starter GPOs within
a domain, you use the Get-StarterGPO PowerShell cmdlet. When using this
cmdlet, you can use one of the following parameters to determine which
starter GPO or GPOs to retrieve:

Get-StarterGPO –Name <Display Name of the Starter GPO>

Get-StarterGPO –GUID <GUID of the Starter GPO>

Get-StarterGPO –ALL (retrieves all GPOs in the domain)
You can use this cmdlet to view the properties of the GPO or GPOs that

are retrieved, as shown in Figure 8.13, or you can retrieve an object
reference to one or more GPOs and pipe the output of this cmdlet into
another cmdlet in order to modify the GPOs you've retrieved.

Figure 8.13 Obtaining a list of GPOs

Retrieving a List of Starter GPOs
Similar to the Get-GPO cmdlet that we just discussed, to retrieve single
starter GPO or a list of all starter GPOs within a domain, you use the Get-
StarterGPO PowerShell cmdlet. When using this cmdlet, you can use one of
the following parameters to determine which starter GPO or GPOs to
retrieve:

Get-StarterGPO –Name <Display Name of the Starter GPO>

Get-StarterGPO –GUID <GUID of the Starter GPO>

Get-StarterGPO –ALL (retrieves all starter GPOs in the domain)

Generating the Resultant Set of Policies Applied
A common requirement when performing troubleshooting of GPOs is
having the ability to answer, “What policies are being applied to my
computer right now?” In order to meet this requirement, Microsoft Group
Policy offers users and administrators the ability to generate a Resultant
Set of Policy (RSoP) report for a user logged on to a particular computer.
The quickest way to return this information is to simply type rsop from

the Run line or command prompt of the local workstation; doing so
returns a graphical report indicating the following:

Which GPO settings are configured
Which GPO applied the setting (useful if you're troubleshooting the
application of multiple GPOs)

You can see the result of the rsop command in Figure 8.14.

Figure 8.14 Resultant Set of Policy output

You can also obtain this information using the Get-GPResultantSetOfPolicy
PowerShell cmdlet, which returns a more verbose set of information,
including which groups the user is a member of. You can customize the
behavior of this cmdlet using a number of additional parameters:

-Path specifies the path to the output file.
-Computer specifies which computer the RSoP report should be run for,
if not the local computer.
-User specifies which user the RSoP report should be run for, if not
the currently logged-on user.
-ReportType [XML | HTML] saves the output in either XML or HTML
format.

Figure 8.15 shows some sample output from the Get-GPResultantSetOfPolicy
tool.

Figure 8.15 Sample Get-GPResultantSetOfPolicy output

Part III

Protecting Your Investment in Active
Directory

Chapter 9 Automating Active Directory Security
Chapter 10 Backing Up Data and Recovering from Disasters
Chapter 11 Monitoring Health and Performance

Chapter 9

Automating Active Directory Security

IN THIS CHAPTER, YOU WILL LEARN TO:
SECURE THE FOREST

Automate Directory Permissions
Manage Passwords

MANAGE BITLOCKER
Manage BitLocker Settings
Manage BitLocker Recovery Passwords

In today's enterprise environment, security can no longer be treated as an
afterthought. Instead, it's foremost on the minds of everyone involved in
managing IT infrastructure. There are a number of reasons for this, from
regulatory compliance to protection of resources from insider and
outsider cyber threats. Regardless of the requirement or need, it's widely
accepted that security must be engineered in from the beginning and not
merely bolted on after the fact.

In this chapter, we'll focus on how to use PowerShell to secure the
Active Directory environment. There are an extraordinary number of
security objects in Windows and AD, many more than can be covered in
the scope of a single chapter, so we'll focus on some descriptive examples
for essential security components in AD that can be applied widely.

First we'll explore how to secure the forest through the fundamentals of
directory permissions, password management, and account management
using PowerShell. Then you'll learn how to manage the Windows
volume-encryption feature called BitLocker. We'll show you how to use
PowerShell to manage BitLocker's configuration and settings as well as

how to manage BitLocker recovery in AD.

Secure the Forest
Let's begin by examining how to automate security aspects of AD in
order to secure the forest. At the core of AD security is the AD
permission model, which is designed to provide secure access for all AD
containers and objects. We'll focus on illustrating some of the cmdlets
that automate AD security management at the cmdlet level. Keep in mind
that to automate large-scale tasks, you can easily combine these cmdlets
into PowerShell scripts like those that have been shown throughout the
book.

Automate Directory Permissions
In AD, default security permissions are assigned to the administrator of
the domain or forest—in other words, the domain administrator or the
enterprise administrator. Every container and object in AD has an
associated permission model, which we'll discuss in more detail in a
moment. Each object has permissions associated with it by default.
Understanding what permissions are associated with the objects in the
directory is essential for effective AD administration.

If a user or computer has insufficient permissions to certain objects in
the directory, then critical operations may fail. On the other hand, if users
or computers are granted excessive permissions, then accidental or
deliberate harm may come to the directory through data alteration or
deletion. Let's examine how to delegate permissions to an OU.

Delegating Permissions to an Organizational Unit
To effectively manage AD for the enterprise, as well as reduce the
exposure of the enterprise administrative accounts, a good security
practice is to delegate administrative control to certain users or groups in

the directory. In this section, we'll examine how to accomplish this using
PowerShell.

You can enable others to administer an OU in AD by delegating the
permissions on a specific OU to a user or group of users. Objects in AD
have permissions associated with them using an Access Control List
(ACL). Although it's possible to delegate control to a single user, it's
usually a better strategy to delegate control to a group; users can be added
to or removed from the group without the need to change the underlying
permissions on the AD objects or containers.

Each object in AD has a security descriptor associated with it. The
security descriptor is the means by which you can modify access control
to the object. A security descriptor consists of a discretionary ACL
(DACL) and a system ACL (SACL). In this sense, there are two separate
ACLs for each object. Each ACL contains one or more access control
entries (ACEs). The ACE is the means to set allow or deny access to an
object.

ACEs support the concept of inheritance. Setting the inheritance
behavior of an ACE enables permissions to propagate down the AD
hierarchy. For example, you can set an ACE to delegate permissions on
an OU, and those permissions will propagate to the child objects in the
OU, namely the user accounts in the specified OU.

Viewing the ACL on an OU in Active Directory
An OU is a container in AD, and like other objects in AD, an OU has
permissions associated with it as just described. PowerShell provides a
straightforward approach to viewing the ACLs on objects in AD,
including an OU.

First, let's say you want to list all the OUs in the domain. As you've
seen throughout the course of this book, there is often more than one way
to accomplish the same task using PowerShell, so the techniques
presented may not be the only way to accomplish a specific task. The

following cmdlet lists the OUs in the domain by name using one of these
methods:
Get-ADOrganizationalUnit –Filter {Name –like ‘*’} | FT Name

The expected output looks something like this:
Name

Domain Controllers
Finance
Sales
Marketing
Managers
Engineering

Now that you have the list of names, you can select the OU you want to
delegate permissions on or perhaps use as a prototype OU to copy a
template ACL to a new OU, as we'll illustrate in the next section. You can
use the following cmdlet to view the ACL on an OU.
Get-Acl “AD:OU=Engineering,DC=contoso,DC=COM” | Format-List

This cmdlet displays the path, owner, group, access, audit, and Security
Descriptor Definition Language (SDDL) for the Engineering OU. Armed
with this information, an administrator may begin to evaluate the
permissions to determine necessary changes to allow or restrict
permissions. In this case, your goal is to delegate administrative control
of the OU, so let's more closely examine the next steps for that task.

Setting the ACL on an OU in Active Directory
In the previous section, we showed you how to list the OUs that exist in
the domain and how to view the ACL for those OUs. It's possible to
create specific ACEs that provide rights on an object for delegation using
a script, although an easier way is to use the Delegation of Control
Wizard in the Microsoft Management Console (MMC) snap-in for Active
Directory Users and Groups. Use the Security tab on the property page to
view the ACL for the object or container.

Using this approach, you can create a template ACL that can be used as
a prototype to apply to other OUs you create. Alternatively, you can use

the dsacls utility to modify the ACLs on a prototype OU, which can then
be applied to new OUs. For this example, let's assume you've created an
ACE for a user in the Engineering OU; you've done this so this user can
be a delegated administrator for the Engineering OU and because you
want to apply that same permission to a new OU for the Engineering
Research department.

To accomplish this, you can create a new OU called Research and then
apply the ACL from the Engineering OU. The following script creates the
new OU and sets a prototype ACL on an OU from the Engineering OU:
#Applies an ACL prototype to a new OU
$ACL=Get-Acl “AD:OU=Engineering,DC=contoso,DC=COM”
$OU=New-ADOrganizationalUnit –Name Research
Set-Acl $OU –AclObject $ACL

Viewing the ACL of a User
As described earlier, each object in AD has an ACL associated with it to
control access to the object. Manipulation of the ACL will allow or deny
certain rights to the object. To view specific rights for objects in AD,
look in the AD Computer and Users snap-in under the Security tab. Let's
briefly examine how to modify the ACL directory using PowerShell.

An administrator may want to grant or restrict access to a specific
object in AD. We demonstrated earlier how to use Get-Acl and Set-Acl to
view and set an ACL on an OU in AD. You can also use these cmdlets to
view and set an ACL on other objects in AD, such as users, computers,
and groups.

The following script demonstrates how to view the access permissions
for the user account for Jane User:
(Get-ACL ‘AD:\CN=JaneUser,CN=Users,DC=contoso,DC=com’).Access
| FT IdentityReference,AccessControlType –A

Assigning an Administrator to a Particular OU
OUs in AD may contain user, group, and computer objects. When
administrators create OUs, they may choose to delegate management

control of that OU to a specific administrator. This is common for
resource OUs, where the domain administrator may want to assign a
specific administrator to manage that OU.

The following AD module cmdlet makes it simple to add a manager to
an OU. This example sets the manager of the Engineering Servers OU to
be Jane User:
Set-ADOrganizationalUnit ‘OU=Engineering Servers,DC=contoso,
DC=com’ –ManagedBy ‘CN=Jane User,OU=Engineers,DC=contoso,DC=com’

Manage Passwords
Passwords are literally the key to the security of Windows, and as such
they're the first line of defense and require extraordinary precautions to
ensure the security of the enterprise. Passwords are a necessity when it
comes to running an AD enterprise. In some cases, passwords are
managed transparently by Windows; but in the majority of cases that
administrators worry about, they require manual password
administration.

Typically we think of users first when we're concerned with password
management, although other types of accounts have passwords that you
must also be aware of in AD. As we mentioned, some of these accounts
have passwords automatically managed by Windows, whereas others
require that the enterprise administrator manage them. The first category
of accounts, computer accounts, has passwords automatically managed by
Windows. The second category of accounts are managed-service accounts
and virtual accounts, which were introduced in Windows Server 2008 and
Windows 7.

In this section, we'll describe techniques you can use to manage
passwords in AD to help mitigate risks associated with passwords for
user and service accounts. The AD module for Windows PowerShell
greatly simplifies the work required to manage these passwords in a
number of cases by reducing what was formerly complex Active
Directory Services Interface (ADSI) script to what in many cases is now a

single-line cmdlet of PowerShell—which is great news for
administrators.

Active Directory Module for Windows
PowerShell

Windows 2008 R2 includes a module to simplify administration of AD, the AD
module, which consolidates a group of cmdlets for AD administration. This module
can only be installed on computers running Windows Server 2008 R2 or Windows 7
with the Windows Server 2008 R2 Remote Server Administration Tools (RSAT).
The module is automatically installed on Windows 2008 R2 DC and can be found
under Administrative Tools from the Start menu. At least one instance of Windows
2008 R2 AD Web Services must be installed on a DC in order to use this module for
administration of the domain.

Changing the Password of a Service Account
In this section, we'll describe how to use PowerShell to change service
account passwords. As mentioned earlier, Windows 2008 R2 introduced a
new feature for managed-service accounts. Managed-service accounts
allow for automatic password management for service accounts when the
forest is at the Windows Server 2008 R2 functional level. Windows
PowerShell cmdlets are available to add, update, or delete managed-
service accounts, because Windows Server 2008 R2 doesn't provide a
management user interface to managing these new accounts. The
following steps show the cmdlets you can use to create a managed-
service account and reset the password of the account.

1. Create a new AD managed-service account using the following
PowerShell command. You can set additional optional attributes using
this command when creating an account:
New-ADServiceAccount [-samAccountName <String>][-Path
<String>]

2. Reset the service account into AD DS. The following PowerShell
command resets the managed-service account password. (For

complete details on the command to reset the managed-service
account password, use Get-Help –detailed.)
Reset-ADServiceAccountPassword [-samAccountName <String>]

Enterprises that are unable to operate at the Windows Server 2008 R2
functional level must manually manage service account passwords. In
those instances, service accounts that are used to manage services
across the forest or domain are AD accounts. The following command
is an example of what you can use to reset or change the password of an
AD account:
Set-ADAccountPassword –Identity MyServiceAccount –Reset
–NewPassword (ConvertTo-SecureString –AsPlainText
“@StrongP@assw0rd!” –Force)

Forcing a Domain-Wide Password Reset
Sometimes you may want to perform a domain-wide password reset.
Examples include a domain security breach or something as benign as a
central administrator leaving the company. Should the need arise to
perform a domain-wide password reset, scripting can help greatly to
accomplish this task. Let's look at a simple example of how to approach
this task:

1. Obtain a list of all domain users. The following PowerShell
command retrieves the list of domain users for the domain specified
or, if it's left unspecified, the domain of which the computer is a
member. You can limit this to a specific OU using the -SearchBase
parameter or explicitly specify the domain from which you want to
retrieve the user list. This example retrieves the list of users from the
default domain for the DC:
Get-ADUser –Filter ‘Name –like “*”’

Or even more simply, you can list just the usernames:
Get-ADUser –Filter * | FT Name

Note
Many of the tasks demonstrated in this section can be accomplished using
an [adsisearcher] if the AD module for PowerShell is not available.

2. Set the user account to require a password change on the next
logon:
Set-ADUser –Identity [$user] –ChangePasswordAtNextLogon $true

Resetting the Passwords of a Compromised RODC
If a read-only domain controller (RODC) is compromised, it's not
possible to clear the password cache. Therefore, you must reset the
passwords for the users on the RODC. Fortunately, PowerShell provides a
relatively straightforward method to accomplish this task.

You can reset the user passwords on the RODC using a script like this:
Set-ADAccountPassword –Identity [$user] –Reset –NewPassword
(ConvertTo-SecureString –AsPlainText “Pa$$w()rd1” –Force)

Ensuring That No User Has a Blank Password
Next, we'll look at how to ensure that users don't specify blank passwords
in AD. You can accomplish this by managing the Fine-Grained Password
Policy (FGPP). The AD module provides support to enforce essential
password security policies that include password complexity, password
lockout duration, password age, password length, and password history.

Although the policy doesn't check for user accounts that already exist
before the policy is set, it ensures that subsequent accounts that are
created or passwords that are reset meet the policy as specified.

Here's a sample that illustrates how to set the FGPP to ensure that no
user has a blank password:

1. Determine the current default domain password policy. This cmdlet
returns the policy for reference. Regularly examining the default
domain password policy is a good security practice to ensure that

changes haven't occurred to the policy that drift away from what's
expected:
Get-ADDefaultDomainPasswordPolicy

2. Set the default FGPP for the domain to ensure that no blank
password may be created:
Set-ADDefaultDomainPasswordPolicy –Identity companyname.com
–PasswordHistoryCount 10 –MinPasswordLength 16
–MinPasswordAge 1.00:00:00 –MaxPasswordAge 90.00:00:00
–LockoutObservationWindow 0.00:30:00 –LockoutThreshold 3

In this example, the policy requires that passwords created on the
domain must have a minimum password length of 16 and ensures that
the same password isn't used again for at least 10 password resets.
Additionally, this policy requires user passwords to be reset every 90
days.

Finding Users Who Have Passwords Set Never to
Expire
It's important to domain security for administrators to understand which
accounts have passwords that don't conform to your site policy. In some
cases you may have legitimate accounts that don't have expiring
passwords; but you need to regularly monitor for accounts that don't fit
into that category.

This is important because accounts with passwords that don't expire
may create a serious security risk on the domain. Should those passwords
become compromised, an attacker could go undeterred in their use of
those compromised accounts. Routinely changing passwords on accounts
that are used by services ensures that this threat is mitigated.

Here's a cmdlet that lets you report which accounts have passwords set
to never expire:
Search-ADAccount –PasswordNeverExpires
| where {$_.ObjectClass –eq ‘user’} | FT Name,ObjectClass -A

Dealing with Account Lockouts

During the course of administering an AD enterprise environment, you
may have users with locked-out accounts. This can be the result of an
individual user's action or of brute-force password attacks against the
domain. In either case, you need an efficient method to unlock those
accounts to enable users to log onto the domain and get back to work.

When a single user is locked out, an administrator can use the AD
Administrative Center or the Active Directory Users and Computers
(ADUC) management console to unlock the user account. However, in
those cases of widespread account lockouts, a script will prove to be
invaluable.

In the following sections, we'll examine scripts that will search for
accounts in AD that are locked out and how to unlock those accounts
using PowerShell.

Finding Accounts That Are Locked Out
Finding locked-out user accounts is straightforward using the following
AD Administration cmdlet:
Search-ADAccount –LockedOut | where {$_ObjectClass –eq ‘user’}
| FT Name

This example filters the class of accounts that are searched for to
include only user accounts. You could use this same technique to search
for other accounts that are locked out by modifying that search condition.

Unlocking User Accounts
Unlocking accounts that have been locked out is a simple operation using
the following cmdlet:
Unlock-ADAccount -Identity “CN=Joe User,OU=Engineering,
DC=contoso, DC=COM”

In instances where a number of user accounts have been locked out and
need to be unlocked, using the PowerShell pipeline or creating a short
script is appropriate. Combining the two cmdlets to find and unlock

accounts can accomplish this task, assuming that every locked-out
account in the OU in question is to be unlocked for use (see Listing 9.1).

Listing 9.1: Unlock-UserAccounts.ps1

File Name: Unlock-UserAccounts.ps1
Description: Unlocks locked-out user accounts in the Contoso
domain
Get the user accounts that are locked-out
$accts = Search-ADAccount –LockedOut | where {$_.ObjectClass
 –eq ‘user’}
Loop through each object in $accts
foreach ($acct in $accts)
{
 Unlock-ADAccount –Identity $acct.samAccountName
}

Manage BitLocker
BitLocker was introduced in Windows Vista and Windows Server 2008
and provides Full Volume Encryption (FVE) for Windows client and
server computers. For Windows Server, BitLocker is an optional feature
that must be installed prior to use. The default behavior of BitLocker is
for use with a Trusted Platform Module (TPM). Using BitLocker in
conjunction with a TPM provides a secure root of trust (that is, a secure
boot) for the FVE solution. Although using a TPM is the default behavior,
BitLocker may also be configured on systems without a TPM by using an
alternative protection method such as storing a key on the USB drive. In
BitLocker terminology, the usage method of BitLocker may be referred
to by the key protector that is being used. You'll notice that key protector
is a term we'll use frequently in this discussion. A “key protector” is the
method by which BitLocker implements cryptography to ensure that a
volume's cryptographic key is protected when not in use by the system.
Microsoft defines key protector as “a method for accessing the [volume
master key]. Examples are PIN, external key, recovery password, and
recovery key.” We will discuss these examples over the course of this
chapter.

It's important to note that BitLocker is volume-based encryption, so
rather than encrypting an entire hard-disk drive, BitLocker instead
encrypts the volumes on the drive. This is an essential point, because
we'll be examining a script to get status and to configure BitLocker, and
this will be accomplished per volume. As mentioned, you can configure
BitLocker a variety of ways using key protectors.

Manage BitLocker Settings
In this section, you'll develop an understanding of how to manage
BitLocker in the enterprise using PowerShell. Although BitLocker doesn't
have a PowerShell module that allows direct management, it does have a
Windows Management Interface (WMI) management interface that
includes methods and properties for essentially every aspect of BitLocker
that you'll need to manage that can be accessed using PowerShell. Even
though BitLocker doesn't provide a PowerShell module of its own, you
can organize the script we'll examine in the following sections into
functions to further simplify BitLocker management in your
environment.

Table 9.1 summarizes the support key protectors for BitLocker in
Windows 7 and Windows Server 2008 R2.

Table 9.1 BitLocker Key Protectors
Operating System Volume Data Volumes

TPM Password

TPM + PIN Smartcard

TPM + PIN + USB Automatic unlock

USB (startup key) Recovery key

Recovery Key Recovery password

Recovery Password Data recovery agent (certificate)

Data Recovery Agent (Certificate)

Before we jump into specific tasks involved in BitLocker management,
let's look at the WMI interface you'll be working with. You're interested
in two WMI provider classes when managing BitLocker with a TPM:

Win32_TPM

Win32_EncryptableVolume

Each of these classes contains a number of WMI properties and
methods that you can access using PowerShell. In the remainder of the
chapter, we'll demonstrate how to use the power of the WMI classes with
PowerShell to manage BitLocker.

WIN32 API for BitLocker and TPM
Services

Microsoft has documented the Win32 API for its WMI for BitLocker and TPM
services. For more information about the properties and methods available, see
http://msdn.microsoft.com/en-us/library/aa376476(v=VS.85).aspx.

Determining Whether a Computer Has BitLocker
Enabled
The first step in automating any deployment of BitLocker is to determine
whether BitLocker is enabled on a system. This process may be as simple
as checking the status of BitLocker on the system, referred to as
ProtectionStatus; the process can be made more comprehensive by
evaluating whether the system has a BitLocker-capable TPM.

Let's begin by examining how to verify the BitLocker protection status
of a system using the most direct method. This one-liner accomplishes
that task for the local system and returns the status of all the volumes
attached to the local system:
Get-WMIObject –Class Win32_EncryptableVolume –namespace “root\
CIMV2\Security\MicrosoftVolumeEncryption”

Similarly, if you want to verify the TPM status of the local system, this
one-line script does that:
Get-WMIObject –Class Win32_Tpm –namespace
“root\CIMV2\Security\MicrosoftTpm”

http://msdn.microsoft.com/en-us/library/aa376476%28v%3DVS.85%29.aspx

You can run either of these using the -computername parameter to query the
status of BitLocker or the TPM on a remote computer, which lends itself
to automating this activity over a group of computers.

You can determine the available properties using the Get-Member or gm
option. For example, the following script returns the available properties
for BitLocker:
$BDE=Get-WMIObject –Class Win32_EncryptableVolume –namespace “
root\CIMV2\Security\MicrosoftVolumeEncryption”
$BDE | Get-Member

Displaying the properties you're interested in is easily accomplished
using the select option, as shown in the following example, which displays
the drive letter and associated BitLocker ProtectionStatus on the local
computer:
$BDE=Get-WMIObject –Class Win32_EncryptableVolume –namespace
 “root\CIMV2\Security\MicrosoftVolumeEncryption”
$BDE | select DriveLetter,ProtectionStatus

Now that you have a sense of the basics required to interface with the
BitLocker WMI classes through PowerShell, let's examine how you can
use PowerShell to automate some of the configuration management tasks
necessary to effectively deploy and manage BitLocker.

Automating the Configuration of BitLocker
Given the concerns around data protection in the enterprise today, which
sometimes include the need to adhere to regulatory compliance or
corporate governance requirements, it's beneficial to have
implementations of data protection that are as automated as possible.
Unfortunately, Windows Vista and Windows 7 lack native support to
automatically turn on BitLocker. But using PowerShell, you can create a
script that can improve certain aspects of automation.

In this section, we'll look at the minimum steps that an enterprise might
consider when developing a rudimentary capability to enable BitLocker
automatically using PowerShell.

The following list contains the basic steps to enable BitLocker using a

TPM for Windows 7 or later versions of Windows:
1. Is the TPM activated and owned?
2. Is the computer running Windows 7 or later?
3. Is there sufficient room on the hard drive to enable BitLocker?
4. If all the conditions are satisfied, turn on BitLocker.

Let's take each of these steps and examine it more closely in the context
of the PowerShell script required to accomplish it.

Determining Whether the TPM Is Activated and
Owned
To determine whether the TPM on the machine is activated, you can use
the following script (we go into details about how to activate and take
ownership of a TPM later in this chapter):
$TPM=Get-WMIObject –Class Win32_Tpm –namespace
 “root\CIMV2\Security\MicrosoftTpm”
$TPM.IsEnabled()
$TPM.IsActivated()
$TPM.IsOwned()

The output variable of each of these methods is a Boolean that, if it
evaluates to True, indicates that the TPM is enabled, activated, and
owned. Alternatively, the TPM class provides initial property values that
you can check, although they don't update after an instance of the class
has been instantiated. The properties are as follows:

IsActivated_InitialValue

IsEnabled_InitialValue

IsOwned_InitialValue

The methods provide a more accurate accounting of the current state of
the TPM because they query the TPM each time they're invoked.

Preparing the TPM for Use with BitLocker
Preparing the TPM for BitLocker is typically a three-step process. The three states
are activated, enabled, and owned. The Trusted Computing Group (TCG,

www.trustedcomputinggroup.org/) requires a physical presence check as part of
activating a TPM. See the section “Enabling and Taking Ownership of the TPM” for
more information about the PowerShell script necessary to accomplish these steps.

Determining the Version of the Operating System
You can determine the version of the operating system and check to see if
it's at least Windows 7 using the following script:
$OS=Get-WMIObject –Computername $ComputerName
 Win32_OperatingSystem
$OS

Determining the Amount of Free Space on the Disk
BitLocker sets aside around 6 GB of free space for the user to use while it
encrypts. For our purposes, let's say you want to have 10 GB of free space
on the drive. You can check free space with the following script:
$C=Get-WMIObject –Class Win32_Volume -Filter “driveletter =
 ‘C:’”
$C

The if statement to verify that the free space is larger than 10 GB is as
follows (note that the value is in bytes):
if ($.FreeSpace –gt 10737418240)

Turning On BitLocker
Finally, if all the previous conditions are satisfied, you can attempt to
enable BitLocker on the computer. A couple of WMI methods are
required to enable BitLocker; so when you're using PowerShell, you need
to use the same approach. Let's walk through the minimum steps required
to enable BitLocker on a computer that has a prepared TPM.

To begin, normally you get an instance of the BitLocker WMI class as
shown in the following script:
Get-WMIObject –Class Win32_EncryptableVolume –namespace “root\
CIMV2\Security\MicrosoftVolumeEncryption”

However, you're going to turn on BitLocker for a specific volume, so

http://www.trustedcomputinggroup.org/

you need to instantiate a specific instance of the class for the volume that
you want to encrypt. In this example, you want to enable BitLocker on the
C: volume. This script accomplishes that (note that we've changed the
return variable to $FVE to denote an instance of a volume):
$FVE=Get-WMIObject -class Win32_EncryptableVolume -namespace
“root\CIMV2\Security\MicrosoftVolumeEncryption” -Filter
 “DriveLetter=‘C:’”

Now that you have an instance of the volume to be encrypted, the next
thing you need to do is create a key protector that will protect the volume.
The primary key protector that you want to use to protect the operating
system volume is the TPM. The following script shows how to create a
TPM key protector for C::
$FVE.ProtectKeyWithTPM();

Notice that you call the ProtectKeyWithTPM method without specifying any
input variables. By default, when this method is called without any input
variables, the TPM uses default Platform Configuration Register (PCR)
values for PCRs 0, 2, 4, 5, 8, 9, and 10. If you prefer to customize the
PCR values to use, you can specify them in the input parameter for the
method call.

TPM Platform Configuration Registers
The TPM includes registers to store platform measurements referred to as Platform
Configuration Registers (PCRs). By default, BitLocker uses PCRs 0, 2, 4, 5, 8, 9,
and 10 when configured for use with the TPM. It's also possible to specify the
registers to be used by BitLocker. For more information about PCRs and their use by
BitLocker, refer to http://msdn.microsoft.com/en-us/library/aa376470(v=vs.85).aspx.

Next, you need to create alternative key protectors that will be used to
access the encrypted volume in case the computer goes into BitLocker
recovery mode. If the Group Policy has been configured to automatically
back up recovery passwords to AD, then a recovery password will be
automatically generated and backed up. In this example, you'll create two
key protectors that perform this function.

http://msdn.microsoft.com/en-us/library/aa376470%28v%3Dvs.85%29.aspx

The two methods you'll use are the following:
ProtectKeyWithExternalKey

ProtectKeyWithNumericalPassword

Note that what we refer to as the BitLocker recovery password is also
called the numerical password when you're working directly with the
BitLocker WMI class. They're the same object, and we'll use both terms
throughout the chapter.

The script to create these key protectors is as follows:
$FVE.ProtectKeyWithExternalKey()
$FVE.ProtectKeyWithNumericalPassword()

When you call the method ProtectKeyWithNumericalPassword without
specifying any input parameters, it automatically generates a recovery
password that is stored securely on the computer. If you do this, you may
want to retrieve this password from the computer unless it's
automatically backed up to AD. Use the method GetNumericalPassword to
retrieve the password. You'll need to provide the VolumeKeyProtectorID, which
looks something the following from the method:
VolumeKeyProtectorID : {9626485F-E13D-4BC3-BD52-EB0FF4633F85}

Now that you've created the key protectors you'll use to protect the
operating system volume of this computer, all that remains is to start the
encryption. Before you do this, it's important to note that methods are
available to verify that a computer is capable of supporting BitLocker as
well as verify that the computer disk drive has been prepared for
BitLocker conversion. It's a good idea to include these checks and options
in any comprehensive script you create for enterprise use. This example
simply starts encrypting the volume using the following one line of
script:
$FVE.Encrypt()

BitLocker automatically uses the key protectors you've created on the
instantiated class for the operating system volume: C: in this case. You
can check conversion status using the following line of script:
$FVE.GetConversionStatus()

GetConversionStatus contains output variables that report the ConversionStatus
as well as EncrytionPercentage, which allows you to monitor progress and
determine when encryption has completed. If you need to pause
encryption at any point, you can do so with the following:
$FVE.PauseConversion()

Windows Command-Line Interface for
BitLocker

A command-line tool called manage-bde.exe is available for BitLocker; it allows for the
status and configuration of BitLocker. The advantage of calling WMI directly using
PowerShell is that robust error reporting and handling are available. However, manage-
bde.exe does streamline several aspects of gathering status and enabling BitLocker.
For more information about the manage-bde.exe command-line interface, see
http://technet.microsoft.com/en-us/library/dd875513(WS.10).aspx.

This concludes our discussion of the minimum steps required to enable
BitLocker for an operating system volume using the TPM key protector.
Now that you understand the fundamental workflow, you can combine
these steps into a single script that can be run against a computer or group
of computers. It's important to note that the BitLocker WMI interface has
a very rich error-reporting framework and that any comprehensive script
should include error handling to process and log the errors that may and
will arise when you attempt to enable BitLocker on a large collection of
computers.

Storing TPM Information in Active Directory
Storing TPM information in AD is an essential step in order to manage
the TPM on computers in the enterprise after the TPM has been activated.
Because the TPM password isn't stored on the local computer, there is
one chance to store this password when the TPM is enabled in Windows.

Why do you need to store the TPM owner password in the first place?
TPM vendors follow the TCG specification when engineering a TPM.

http://technet.microsoft.com/en-us/library/dd875513%28WS.10%29.aspx

Each vendor that builds a TPM has its own implementation based on the
TCG specification. Due to this, you may observe differences in the
behavior of one computer manufacturer versus another depending on the
TPM that is included on the computer. Specifically, lockout behavior
may vary from one TPM manufacturer to the next for failed PIN entry
attempts. If the TPM needs to be reset, the TPM owner password is
required.

The TPM owner password—actually the hash of the owner password—
is stored under the computer object in AD. Only one owner password is
stored per computer, and it's stored in the attribute with the CN msTPM-
OwnerInformation. Next we'll discuss the policy and steps required to store
TPM owner information in AD.

Setting Policy to Require TPM Owner Information
to Be Stored in Active Directory
The policy to require that BitLocker recovery passwords be archived in
AD can be found in the Local Group Policy Editor or the Group Policy
Management Console (GPMC) under Computer Configuration ⇒
Administrative Templates ⇒ System ⇒ Trusted Platform Module
Services. Navigate to the policy “Turn on TPM backup to Active
Directory Domain Services.”

To configure this policy, select the Enabled radio button to configure
the options in the dialog box. Next, select the Require TPM Backup To
AD DS check box to complete the configuration. This configuration
doesn't require that computers contact AD DS in order to back up the
TPM owner password.

As described in the policy, once the TPM owner password is
configured, you can't set or change it if the computer isn't connected to
the domain or if the backup should fail if the computer is unable to
contact the domain.

Preparing Active Directory to Store TPM Owner
Information
You must add an ACE to enable a computer to back up the TPM owner
information into the computer object in AD. This must be done before
you configure computers with activated and owned TPMs in the
environment to ensure that the TPM owner password hash is backed up to
AD.

Self-Write ACE for TPM Information in
Active Directory

Microsoft provides script that demonstrates how to ensure that AD permissions are
correctly configured to store the TPM owner information for computers. Refer to
http://technet.microsoft.com/en-us/library/cc749026(WS.10).aspx for more
information about setting the SELF-write ACE.

Enabling and Taking Ownership of the TPM
As we've mentioned, the TPM has three distinct states: activated,
enabled, and owned. You saw earlier an example script that demonstrated
how TPM status can be checked as a condition of enabling BitLocker.
You can use a similar script to enable the TPM as well as to take
ownership of it. It's important to note that in current TPM
implementations, a physical presence is required to activate the TPM, so
it may not be possible to carry out that function without having physical
possession of the computer.

When you turn on BitLocker for the first time on a computer, it is a
good idea to clear the TPM completely unless you can establish a clear
chain of custody of the computer. Some enterprises may elect to have the
TPM preconfigured when shipped from the original equipment
manufacturer (OEM) to simplify deployment. In that case, the TPM may
already be activated and the root keys associated with the TPM (in

http://technet.microsoft.com/en-us/library/cc749026%28WS.10%29.aspx

particular, the TPM endorsement key pair) available for use. It's possible
to reset these keys, although we won't go into those details here.

Let's assume you have an OEM-configured machine that has an
activated TPM, although that TPM isn't enabled and isn't owned. The
Windows TPM WMI interface allows you to query and configure these
aspects of the TPM in order to use it with BitLocker. Let's look at the
steps you need to complete to prepare the TPM for use:

1. Verify that the TPM on the computer is enabled and that it has an
endorsement key (EK) pair available for use. You can use the
following script to verify that the TPM is enabled:
Get an instance of the TPM Class to work with
$TPM=Get-WMIObject –Class Win32_Tpm –namespace “root\CIMV2\
Security\MicrosoftTpm”
Check to see if the TPM is enabled
$TPM.IsEnabled()

When you run this script, the method return tells you whether the
method succeeded. To check the TPM status, you need to evaluate the
Boolean return variable IsEnabled, which is either True or False. When
you run the script without specifying that, as you did here, the IsEnabled
return variable is displayed on the console.
To check whether the TPM has an EK you can use, you use a line of
script like this with the same $TPM instance:
$TPM.IsEndorsementKeyPairPresent()

Similar to the previous example, the return variable is a Boolean
value for IsEndorsementKeyPairPresent. If it evaluates to True, then you
have a good key pair to use.
2. Now that you've verified that the TPM is enabled and you have a
good EK to work with, you can begin the process of activating the
TPM. I say the process because you must complete a few steps in this
phase. Before you begin, it's a good idea to check to make sure the
TPM will allow you to take ownership of it:
$TPM.IsOwnershipAllowed()

Assuming all is well, you're ready to activate the TPM. The TCG

specifies that activating the TPM should follow specific state
transitions. You can use the following WMI methods to transition
these states and ultimately activate the TPM:

SetPhysicalPresenceRequest

GetPhysicalPresenceTransition

GetPhysicalPresenceResponse

You set the physical presence request using the SetPhysicalPresenceRequest
method, which is the key method in this process. A number of options
are available when performing this transition, and it's possible to
perform multiple steps in one method call.
Table 9.2 lists what we believe to be the most common options.

Table 9.2 TPM Options
Option Description

1 Enable TPM

3 Activate TPM

6 Enable and activate TPM

14 Clear, enable, and activate TPM

You're interested only in activating the TPM in this step, so you
choose option 3. The following line of script performs that operation:
$TPM.SetPhysicalPresenceRequest(3)

Immediately after the method call returns, you call
GetPhysicalPresenceTransition to determine the next step. The script to
perform that step looks like this:
$TPM.GetPhysicalPresenceTransition()

In this example, let's assume that the return value from the method is
1, which indicates that a reboot is required. Keep in mind that when
rebooting the computer during a TPM transition, a user presence
check may be required. These few lines of script reboot the computer:
$Computer=Get-WMIObject Win32_OperatingSystem
$Computer.reboot()

When the computer reboots, you (or the computer user) may see a
BIOS-level screen that looks like Figure 9.1.

Figure 9.1 TPM BIOS confirmation screen

In this example, the user presses F10 to accept the change to activate
the TPM, and Windows loads. You're almost finished. Finally, you
need to check to see whether there's anything else you need to do. You
do so by calling the method GetPhysicalPresenceResponse:
$TPM.GetPhysicalPresenceResponse()

The return value of the method informs you that there are no pending
actions. You confirm that the TPM is indeed activated by checking it
with the following script:
$TPM.IsActivated()

Again, the Boolean return variable informs you that the TPM is now
activated.
3. Now that the TPM has been activated, you can take ownership of it.
Earlier you verified that the TPM is available for ownership, so you
won't check that again. Before you take ownership of the TPM, you
need to choose a passphrase that will be used to protect the TPM
secrets. You can use a method to convert the passphrase into a TPM
owner authorization value that you'll use to take ownership. Taking
ownership in this sense is a two-part process. The script to convert the
passphrase into a 20-byte owner authorization value is the following:
$TPM.ConvertToOwnerAuth(“password”)

This line of script returns a string that you'll use for the OwnerAuth input
variable for the method to take ownership. The actual return of our
example passphrase converts to 6Pl/upEE0epQR5SObftn+s2fW3M, which you
use in the following line of script:
$TPM.TakeOwnership(“6Pl/upEE0epQR5SObftn+s2fW3M=”)

Finally, you verify that the TPM is now owned:
$TPM.IsOwned()

Verify that that the output Boolean variable is True to ensure that the
TPM is indeed owned. Note that the initial value of IsOwned_InitialValue
still shows False. However, if you create a new instance of the TPM
class, it returns True if you perform that query against the new
instance.
That was a long section, although you should now have a sense of the
steps required to properly prepare a TPM for use with BitLocker.
There are more methods available that we didn't cover, which are
worth consideration when building your own script to configure TPMs
for use with BitLocker in your own environment.

Resetting the Authorization Lockout of the TPM
As we discussed earlier, if a user has attempted to enter their BitLocker
PIN too many time incorrectly, the TPM may enforce a lockout or timing
delay. In order to reset the TPM, you can use the TPM owner password
with this script:
$TPM=Get-WMIObject –Class Win32_Tpm –namespace
 “root\CIMV2\Security\MicrosoftTpm”
$TPM.ResetAuthLockOut(OwnerPassword)

Viewing TPM Recovery Information
The primary information stored in AD for the TPM is the TPM owner
password, as we just discussed. This password is useful to update a
computer without having to clear the TPM, which could have major
operational impacts such as resetting BitLocker.

As we discussed earlier, TPM owner passwords aren't stored locally on
the computer that the TPM belongs to. Therefore, to use the TPM owner
password to manage a TPM, it's critical that you remember that
password. As a backup, you can store the owner password hash in AD and
subsequently use it to manage the TPM if necessary.

The following script demonstrates how to view TPM owner password
information for computers in AD:
Get-ADObject -Filter ‘ObjectClass -eq “msTPM-OwnerInformation”
-SearchBase ‘DC=Contoso,DC=com’

Manage BitLocker Recovery Passwords
BitLocker is a very effective means to protect data using volume
encryption for Windows computers. Given the effectiveness of the
solution, it's imperative that enterprise administrators have a well-
defined strategy for performing recovery of systems if issues arise that
require the BitLocker-protected systems to be recovered. The first part of
defining this strategy is to understand the common scenarios in which
BitLocker users will need to recover their computers. If those computers
are commonly used by a mobile workforce, then the most obvious
solution is to take advantage of BitLocker recovery passwords.

BitLocker Recovery Information
Windows Group Policy allows backups of BitLocker recovery information to
include recovery passwords and key packages. BitLocker recovery passwords are
48-digit readable passwords that are used to facilitate recovery of BitLocker-
protected Windows computers. BitLocker recovery key packages are used to help
recover a BitLocker volume that has corruption in the metadata section of the
volume. A key package is essentially a copy of the lock that is used to protect the
BitLocker volume. If that lock is corrupted, then a recovery key package is a copy
of the lock that can be used to access the volume.

Configuring Active Directory to Store BitLocker

Recovery Passwords
Since Windows 2008, AD has been preconfigured to store BitLocker
recovery passwords. The BitLocker recovery password is stored in the
computer object. Windows Server 2008 provides a Group Policy that lets
you back up the BitLocker recovery information to AD. Through this
Group Policy, it's possible to require backup of recovery passwords and
key packages. By default, computers can use the SELF computer account
to create the necessary objects in AD under the computer object to store
the BitLocker recovery information, including recovery passwords and
key packages. No additional configuration work regarding AD
permissions is required to enable BitLocker to store recovery information
in AD.

By default, the AD administrator has access to BitLocker recovery
passwords and key packages. In some cases, the administrator will want
to delegate permissions to another user or group to perform the function.
You can use the same method discussed earlier in the chapter of creating
a prototype template with the desired permission model, which you can
then apply to the BitLocker recovery information objects in the directory.

Storing BitLocker Recovery Passwords in Active
Directory
Windows provides a Group Policy to enable BitLocker recovery
passwords to be stored in AD for each volume that is encrypted using
BitLocker. The recommended approach is to ensure that this policy is
enabled to require that BitLocker recovery passwords be stored in AD
prior to computers having BitLocker enabled. This approach ensures that
all computers that have volumes encrypted with BitLocker are
recoverable. The following script shows the BitLocker recovery
information object that the permissions will be applied to:
Get-ADObject -Filter ‘ObjectClass -eq
“msFVE-RecoveryInformation”

Active Directory Schema Extensions for
BitLocker

When you're using a Windows Server 2008 R2 for AD, the schema is already
prepared for BitLocker. However, in Windows Server versions prior to Windows
Server 2008, the AD schema must be extended in order to store BitLocker recovery
information. Refer to the TechNet article at http://technet.microsoft.com/en-
us/library/dd875529(WS.10).aspx for information about how to extend an AD
schema that hasn't been prepped for BitLocker.

Setting Policy to Require BitLocker Recovery
Passwords to Be Stored in Active Directory
The policy to require that BitLocker recovery passwords be archived in
AD can be found in the Local Group Policy Editor or the GPMC under
Computer Configuration ⇒ Administrative Templates ⇒ Windows
Components ⇒ BitLocker Drive Encryption. You'll notice in the root
folder of the Group Policy the policy “Store BitLocker recovery
information in AD Domain Services (Windows Server 2008 and
Windows Vista).” As it suggests, this policy covers only computers with
Windows Server 2008 and Windows Vista operating systems. It's still a
good idea to configure this policy even if you don't have Window Vista
computers to protect against inadvertent data loss.

For Windows 7 and Windows Server 2008 R2 computers, you can apply
policy for the different volume types for operating system volumes, fixed
data volumes, and removable data volumes. Each of these policies must
be separately configured. To set the policy to require backup of operating
system volumes, navigate to the policy “Choose how BitLocker-protected
operating system drives can be recovered” under Operating System
Drives. Select the Enabled radio button, and select the “Save BitLocker
recovery information to AD DS for operating system drives” check box.
In addition, you can specify that the BitLocker recovery information be
backed up to AD DS. You can choose to store recovery passwords and

http://technet.microsoft.com/en-us/library/dd875529%28WS.10%29.aspx

key packages, or just recovery passwords.
Now that the policy is set, any computer that is a member of the

domain will require a connection to AD in order to enable BitLocker. The
reason is to guarantee that a backup of the BitLocker recovery password
will be stored on the domain in AD. Without that policy, computers could
have BitLocker enabled when not connected to the domain, resulting in
potential loss of access and data if those computers went into recovery
and the user didn't have a copy of the recovery password or a recovery
key stored on a USB drive. In the next section, we'll discuss how to
handle the situation where computers don't have BitLocker recovery
passwords stored in AD.

Retroactively Storing BitLocker Recovery
Passwords in Active Directory
In certain circumstances, some computers in the enterprise may have had
BitLocker enabled while the machines were off the domain. This may
occur either because those computers weren't joined to the domain or
were working remotely (offline) when the policy to require BitLocker
recovery passwords was put in effect. In these situations, AD
administrators can connect to those computers using PowerShell and
retroactively have the BitLocker recovery password escrowed into AD.

Let's look at the PowerShell script to connect to a computer and force
the computer to send the BitLocker recovery password to AD:

1. Get the instance of the volume that you'd like to back up the
recovery password:
$FVE=Get-WMIObject -class Win32_EncryptableVolume
-namespace “root\CIMV2\Security\MicrosoftVolumeEncryption”
-Filter “DriveLetter=‘C:’”

2. Now that you have an instance of the C: volume for BitLocker, you
need to determine the recovery password key protector. To do so, you
first need to retrieve the list of key protectors on the volume:
$FVE.GetKeyProtectors()

The output looks something like the following when multiple key
protectors have been created for a volume:
VolumeKeyProtectorID : {{D0C23F2B-182A-4F1D-BC4A-52CDFC00E537},
{196986F0-621C-4384-B463-08D26093E644}, {EA2BB027-DC4F-4CCC-BC6A
-D8BAB9328E6F}, {9626485F-E13D-4BC3-BD52-EB0FF4633F85}}

3. Determine the recovery password protector identifier. For
illustrative purposes, let's interrogate the first volume key protector
ID:
$FVE.GetKeyProtectorType(“{D0C23F2B-182A-4F1D-BC4A
-52CDFC00E537}”)

In this example, the expected output looks like this:
KeyProtectorType : 1

The key protector types we're concerned with are listed in Table 9.3.
For this example, it's the TPM key protector. You can find the
complete list in the BitLocker WMI Win32 documentation.
Evaluate each of the volume key protector identifiers until you find
the identifier of type value equal to 3.
4. Back up the recovery password to AD:
$FVE.BackupRecoveryInformationToActiveDirectory(
“{9626485F-E13D-4BC3-BD52-EB0FF4633F85}”)

In this example, if the script returns 1, then Group Policy hasn't been
enabled to allow BitLocker recovery information to be backed up to
AD. Group Policy must be configured for BitLocker recovery
information to be backed up.

In the next section, we'll discuss how to view BitLocker recovery
passwords in AD. A useful script would combine the techniques
discussed in the next section with this section to ensure that all of the
computers in the enterprise that have BitLocker enabled are able to be
recovered. For example, you may want to determine which computers
that have BitLocker turned on don't have recovery passwords stored in
AD, or you might want to check to see what computers that have
BitLocker enabled don't have the correct recovery password stored in
AD. You can do this using the PowerShell techniques in these sections.

Table 9.3 BitLocker Key Protector Type Name/Value Pairs
Value Name

0 Unknown

1 TPM key protector

2 External key

3 Numerical password (recovery password)

Reading a Recovery Password in Active Directory
As we've illustrated, when Group Policy has been enabled, Windows will
back up BitLocker recovery passwords in AD and store the passwords
along with the volume identifier for each volume that is encrypted with
BitLocker in the computer object of the computer that the volumes are
associated with. We'll now examine the workflow associated with
retrieving the recovery password for a computer that is encrypted with
BitLocker when it goes into recovery.

We discussed earlier that by default, BitLocker recovery passwords are
protected to the AD administrator using the confidentiality attribute. We
described how permissions can be delegated to enable a specific user or
group to read the BitLocker recovery password to help facilitate
BitLocker recovery. In order to search for and retrieve a BitLocker
recovery password from AD, the administrator or user performing that
task must have permissions to read the recovery password in the
computer object. In the example, we assume the account being used to
access the recovery password has the correct read permissions on the
computer object's BitLocker recovery passwords.

Finding Computers with BitLocker Recovery
Information
In order to read a BitLocker recovery password, you need to find the
computer object in AD on which you're looking to recover a BitLocker
enabled volume. BitLocker provides some information on its recovery
console that will assist in this process. One of the pieces of information is

the recovery password identifier assigned to the encrypted volume that
the user is attempting to recover. The CN of the BitLocker recovery
object is msFVE-RecoveryInformation, and the attributes for the specific
recovery data are msFVE-RecoveryPassword and msFVE-RecoveryGuid.

Let's look at what a script needs to do to accomplish this. Consider a
line of script to search AD for the objects that have BitLocker recovery
information. Keep in mind that the number of objects to be returned is
limited, so this is for illustrative purposes only:
Get-ADObject -Filter ‘ObjectClass -eq
“msFVE-RecoveryInformation” -SearchBase ‘DC=Contoso,DC=com’

Finding a BitLocker Recovery Password in Active
Directory
Now that you've seen how easy it is to locate the objects with BitLocker
recovery information, let's look at how you can find a single recovery
password using script. Let's say the user reads the recovery identifier to
be {4AA81B4B-24E1-42C1-86CD-2713C2E9832E}. You can do a
wildcard search of the first eight characters of the string to search AD.
Here's the script that searches for the BitLocker recovery information
based on the recovery identifier that the user reads from the recovery
console:
Get-ADObject -Filter ‘ObjectClass -eq
“msFVE-RecoveryInformation” -SearchBase ‘DC=Contoso,DC=com’
–Properties msFVE-RecoveryPassword | Where-Object
{$_.Name –like “*4AA81B4B*} | FT msFVE-RecoveryPassword, Name

Deleting a Recovery Password from Active
Directory
One of the limitations of the BitLocker implementation of archiving
recovery passwords in AD is that when a new BitLocker recovery
password is created and stored in AD, the old recovery password isn't
deleted. There are a number of reasons why a new BitLocker recovery
password may be created, including creating a new one using the

BitLocker WMI management interface, or turning BitLocker off on a
volume and then turning it back on again.

Regardless of why additional recovery passwords were created, you
may want to prune from the directory the former recovery passwords that
are no longer valid. The following scripts demonstrate how to delete a
recovery password from Active Directory.

Using the previous example, you can search for a specific recovery
password based on the identifier to determine its ObjectGUID:
Get-ADObject -Filter ‘ObjectClass -eq
“msFVE-RecoveryInformation” -SearchBase ‘DC=Contoso,DC=com’
–Properties msFVE-RecoveryPassword | Where-Object
{$_.Name –like “*4AA81B4B*} | FT ObjectGUID
ObjectGUID

 e6342712-eff9-4c8e-a244-e12f88aae78f

From this output, you determine that the ObjectGUID is e6342712-eff9-
4c8e-a244-e12f88aae78f. Now you can use the following script to delete
the recovery password:
Remove-ADObject “e6342712-eff9-4c8e-a244-e12f88aae78f”
–Confirm:$false

This operation should be used with great caution, because deleting
active BitLocker recovery passwords may render computers
unrecoverable. In the unfortunate event that a recovery password is
accidentally deleted, if the computer it belonged to is online, you can use
the following script to create a new recovery password for the computer:
$FVE=Get-WMIObject -class Win32_EncryptableVolume –namespace
“root\CIMV2\Security\MicrosoftVolumeEncryption” -Filter
 “DriveLetter='C:'”
$FVE.ProtectKeyWithNumericalPassword()

Chapter 10

Backing Up Data and Recovering from
Disasters

IN THIS CHAPTER, YOU WILL LEARN TO:
BACK UP ACTIVE DIRECTORY DATA

Back Up the Directory Database
Back Up Other Essential Data
Make Backups Easier

RESTORE DATA
Restore Directory Data
Restore Other Essential Data

In this chapter, we're going to focus on Active Directory backup and
restore. It's crucial to any AD environment to ensure successful backups
to allow for restores in the event of a disaster, accidental or not. Using
PowerShell and scripts can help automate backups and speed the process
of restoration. They can also help with testing restores to ensure your
backups are good.

Back Up Active Directory Data
Active Directory Domain Services (AD DS) is a critical service that
many other services rely on in an AD-centric network. It's crucial to plan
for disasters and ensure proper and consistent backups. Doing so will
assist you in preventing a minor issue from turning into a calamity, such
as an accidental OU deletion.

Throughout the following pages, we'll discuss the proper steps to back
up AD DS via PowerShell and command-line tools.

Back Up the Directory Database
Windows Server 2008 includes a new backup application called Windows
Server Backup; NtBackup no longer exists. Windows Server Backup isn't
installed by default and is a feature of Windows Server. Using
PowerShell in Windows Server 2008 R2, you can install the feature. You
have to import the ServerManager module to get the Add-WindowsFeature cmdlet.
It's recommended that you use the –IncludeAllSubFeature parameter to install
the Windows Server Backup command-line tools and PowerShell
module:
Import-Module ServerManager
Add-WindowsFeature –Name Backup-Features –IncludeAllSubfeatures

The only method to properly back up AD DS on a domain controller
(DC) is to conduct a System State backup. It's recommended that you use
the System State backup because it contains only system-state data,
which minimizes the size of the backup. Table 10.1 lists the components
in a System State backup in Windows Server 2008 and R2. Additional
data may be included depending on which server roles are installed, but
you should include the items in the table at a minimum.

Table 10.1 Components that Make Up a System State Backup
Component Component

Registry COM+ class registration database

Boot files Cluster service information

Active Directory database (NTDS.dit) SYSVOL directory

Active Directory Certificate Services (AD CS) database Microsoft Internet Information Services (IIS) metabase

System files that are under Windows Resource Protection

Windows Server Backup supports two types of backup: manual and
scheduled (see Table 10.2). A scheduled backup can only be created by a
member of the Administrators group because backup operators don't have
the right to create Scheduled Tasks.

Table 10.2 Windows Server Backup Types
Type Notes

Manual A member of the Administrators or Backup Operators group can initiate a manual backup. The target volume can be
a local hard drive or remote network share.

Scheduled A member of the Administrators group can schedule backups. The target volume can be a local hard drive or
remote network share.

Windows Server Backup introduces PowerShell cmdlets. Table 10.3
lists the Windows Server Backup cmdlets and a brief usage description.

Table 10.3 Windows Server Backup Cmdlets
Cmdlet Name Cmdlet Use

Add-WBBackupTarget Adds the WBBackupTarget object, which specifies backup storage locations, to the backup policy (WBPolicy
object)

Add-
WBBareMetalRecovery

Adds the needed items to the backup policy to enable you to perform a bare-metal recovery later with
backups created using that policy

Add-WBFileSpec Adds the WBFileSpec object, which specifies the items to include or exclude from a backup, to the backup
policy

Add-WBSystemState Adds the items needed to the backup policy so that later you can use backups created with this policy to
perform a system-state recovery

Add-WBVolume Adds the list of source volumes to the backup policy

Get-WBBackupSet Gets the list of backups (WBBackupSet objects) that were created for a server and stored at a location that
you specified

Get-WBBackupTarget Gets the locations for storing backups that you specified as part of the backup policy

Get-
WBBareMetalRecovery

Gets the value that indicates whether the ability to perform bare-metal recoveries from backups has been
added to the backup policy

Get-WBDisk Gets the list of internal and external disks that are online for the local computer
Get-WBFileSpec Gets the list of WBFileSpec objects that are associated with the specified backup policy
Get-WBJob Gets the operation that is currently running (WBJob object)
Get-WBPolicy Gets the current backup policy that is set for the computer
Get-WBSchedule Gets the current schedule for backups in the backup policy
Get-WBSummary Gets the history of the backup operations performed

Get-WBSystemState Gets a Boolean value that indicates whether the ability to perform system-state recoveries with the backups
has been added to the backup policy

Get-WBVolume Gets the list of source volumes for the backup that is included in the backup policy

Get-
WBVssBackupOptions

Gets a setting that specifies whether the backups created using the backup policy will be Volume Shadow
Copy Service (VSS) copy backups or VSS full backups

New-WBBackupTarget Creates a new WBBackupTarget object
New-WBFileSpec Creates a new WBFileSpec object
New-WBPolicy Creates a new WBPolicy object
Remove-
WBBackupTarget Removes the backup storage locations (defined by the WBBackupTarget object) from the backup policy

Remove-
WBBareMetalRecovery Removes the request to include all items needed for a bare-metal recovery from the current backup policy

Remove-WBFileSpec Removes the list of items to include or exclude from a backup (as specified by the WBFileSpec object)
from a backup policy

Remove-WBPolicy Removes the backup policy that is currently set
Remove-
WBSystemState

Removes the request to include all items needed for a system-state recovery from the current backup
policy

Remove-WBVolume Removes the volume to back up (specified by the WBVolume object) from the backup policy
Set-WBPolicy Sets the WBPolicy object as the backup policy that will be used for scheduled backups
Set-WBSchedule Sets the times to create daily backups for the backup policy

Set-
WBVssBackupOptions

Sets a value that specifies whether the backups that are created using the backup policy are VSS copy
backups or VSS full backups

Start-WBBackup Starts a one-time backup operation

Creating a One-Time Backup of Active Directory
One-time backups allow you to create a backup out of schedule as
required. It's a good practice to create these backups before and after
major AD DS changes, such as creation or deletion of OUs or sites. To
back up using Windows Server backup cmdlets, you must first import
them using the Add-PSSnapIn cmdlet:
Add-PSSnapIn windows.serverbackup

You then create a Windows Backup policy and add options to the policy
for the backup you're about to run. You create a blank policy in editable
mode using the New-WBPolicy cmdlet:
$WBPolicy = New-WBPolicy

You then add the system-state option using the Add-WBSystemState module:
Add-WBSystemState –Policy $WBPolicy

You now have to add a target for the backup. Windows Server Backup
supports using a disk, network path, or volume for backup. Use the Get-
WBDisk cmdlet to return a collection of disks in the system. Then, use the
New-WBBackupTarget cmdlet to specify a disk to be used for the backup.
Finally, add the target to the policy using the Add-WBBackupTarget cmdlet:
$WBDisks = Get-WBDisk
$backupTarget = New-WBBackupTarget –Disk $WBDisks[2]
Add-WBBackupTarget –policy $WBPolicy –Target $backupTarget

You can store the backups on a remote network share to centralize your
backups. You use the –Network parameter of the New-WBBackupTarget cmdlet to
specify the share path. It's recommended that you use the –Credential and –
NonInheritAcl parameters when using –NetworkPath. –Credential is the username

and password for the user account that has access to the location where
the backup will be stored. –NonInheritAcl applies permissions using the
credentials supplied. This limits the folder access to the credentials
specified or the Administrators/Backup Operators group of the computer
hosting the share. If you don't use this option, users who have access to
the shared folder will have access to the backup as well:
$psCred = Get-Credential
$backupTarget = New-WBBackupTarget –NetworkPath ‘
\\<server>\<share> -Credential $psCred –NonInheritAcl
Add-WBBackupTarget –policy $WBPolicy –Target $backupTarget

If you want to use the volume option, you can get a collection of
volumes on the system using the Get-WBVolume cmdlet with the –AllVolumes
parameter:
$WBVolumes = Get-WBVolume –AllVolumes
$backupTarget = New-WBBackupTarget –Disk $WBVolumes[3]
Add-WBBackupTarget –policy $WBPolicy –Target $backupTarget

The last option for backup targets is using a string for the volume path.
You do so using the –VolumePath parameter of the New-WBBackupTarget cmdlet:
$backupTarget = New-WBBackupTarget –VolumePath M:
Add-WBBackupTarget –policy $WBPolicy –Target $backupTarget

Now that you've created the policy and added the system-state option
and backup target, it's time to execute the backup using the Start-WBBackup
cmdlet:
Start-WBBackup –Policy $WBPolicy

Then, put it all together into a reusable script, as shown in Listing 10.1.

Listing 10.1: Backup-ADDS.ps1

File Name: Backup-ADDS.ps1
Description:
This script is used to create a system state backup of
a domain controller. The script prompts for backup target.
##
Imports the windows server backup snap-in
Add-PSSnapin windows.serverbackup
Creates the blank policy
$WBPolicy = New-WBPolicy
Add the system state option
Add-WBSystemState -Policy $WBPolicy

Prompts for backup target
$caption = “Backup Target”
$message = “Please select the backup target type”
$disk = New-Object ‘
System.Management.Automation.Host.ChoiceDescription ‘
“&Diks”,“help”
$network = New-Object ‘
System.Management.Automation.Host.ChoiceDescription ‘
“&Network Share”,“help”
$volume = New-Object ‘
System.Management.Automation.Host.ChoiceDescription ‘
“&Volume”,“help”
$volumepath = New-Object ‘
System.Management.Automation.Host.ChoiceDescription ‘
“Volume&Path”,“help”
$choices = ‘
[System.Management.Automation.Host.ChoiceDescription[]]‘
($disk,$network,$volume,$volumepath);
$answer = $host.ui.PromptForChoice($caption,$message,$choices,0)
Set the backup target after prompt
switch ($answer){
 0 {
 Get-WBDisk | select DiskName,DiskNumber,Volumes
 $WBDisks = Get-WBDisk
 $WBDisk = Read-Host “Which disk number would you like ‘
 to use: 0,1,2...”
 $backupTarget = New-WBBackupTarget -Disk ‘
 $WBDisks[$WBDisk]
 Add-WBBackupTarget -policy $WBPolicy -Target ‘
 $backupTarget
 }
 1 {
 $netPath = Read-Host “Please enter the network path to ‘
 use: \\<server>\<share>”
 Write-Host “Please enter the credentials to use.”
 $psCred = Get-Credential
 $aclInherit = Read-Host “Do you want to use the ‘
 NonInheritAcl option? Y or N”
 If ($aclInherit -eq “Y”)
 {
 $backupTarget = New-WBBackupTarget ‘
 -NetworkPath $netPath -Credential $psCred ‘
 -NonInheritAcl
 Add-WBBackupTarget -policy $WBPolicy ‘
 -Target $backupTarget
 }
 Else
 {
 $backupTarget = New-WBBackupTarget ‘
 -NetworkPath $netPath -Credential $psCred
 Add-WBBackupTarget -policy $WBPolicy ‘
 -Target $backupTarget
 }
 }
 2 {

 Get-WBVolume -AllVolumes | select ‘
 VolumeLabel,MountPath,FileSystem
 $WBVolumes = Get-WBVolume -AllVolumes
 $WBVolume = Read-Host “Please enter the volume ‘
 number you would like to use: 0,1,2...”
 $backupTarget = New-WBBackupTarget -Volume ‘
 $WBVolumes[$WBVolume]
 Add-WBBackupTarget -policy $WBPolicy -Target ‘
 $backupTarget
 }
 3 {
 $volPath = Read-Host “Please enter the volume path to ‘
 use: D:,M:...”
 $backupTarget = New-WBBackupTarget -VolumePath $volPath
 Add-WBBackupTarget -policy $WBPolicy -Target ‘
 $backupTarget
 }
}
Displays the Backup Policy and runs the backup
$WBPolicy
Start-WBBackup -Policy $WBPolicy

Creating a Snapshot Backup of Active Directory
Windows Server 2008 introduced the ability to create and mount AD DS
snapshots. This feature allows you to mount a snapshot to view the data
contained in the backup. Doing so can save time when you're choosing
which backup to use for restore by letting you compare the backup data.
You can mount and view multiple snapshots at the same time. AD DS and
Active Directory Lightweight Directory Services (AD LDS) can be
snapshotted and mounted without requiring a restart of the DC or AD
LDS server. The snapshot is a copy, created by the VSS, that contains the
database and log files.

To create a snapshot of AD DS, you must log on as a member of
Enterprise Admins or Domain Admins. Then you use the ntdsutil.exe tool.
In the tool, you enter the snapshot context, activate an instance, and
create the snapshot. You use the NTDS parameter to activate the active
instance of AD DS:
Ntdsutil.exe
Snapshot
Activate Instance NTDS
Create

The command returns “Snapshot set {GUID} generated successfully”.
You can use the List All command to view the current available
snapshots on the DC. Backups made with Windows Server Backup are
also listed, as shown in Figure 10.1. The output shows the creation of a
snapshot and a list of the available snapshots. As you can see, there is a
snapshot available on the M: drive that is from a Windows Server backup
that was made earlier.

Enabling the Active Directory Recycle Bin
Windows Server 2008 R2 introduces yet another new and useful feature
related to backup and restore of AD DS: the AD Recycle Bin. In the past,
when an object was deleted, most of the attributes were removed, so it
required a restore from backup. If the object had link-valued attributes
such as group membership, a second restore was sometimes required. The
AD Recycle Bin preserves all the link-valued and non-link-valued
attributes of deleted AD objects. By preserving all of the object's
information, a typical AD restore isn't required, which saves you lots of
time.

Figure 10.1 The output from an ntdsutil.exe snapshot listing

To enable the AD Recycle Bin, your AD or AD LDS forest functional
level must be at Windows Server 2008 R2. Understand that enabling the
AD Recycle Bin is irreversible—you can't disable it after it's enabled.
When all your DCs are running Windows Server 2008 R2, you can raise
the forest functional level using the Set-ADForestMode cmdlet. Remember to
import the AD module:
Import-Module ActiveDirectory
$ADForest = Get-ADForest
Set-ADForestMode –Identity $ADForest –ForestMode ‘
Windows2008R2Forest

After raising the forest level, you can enable the AD Recycle Bin. You
must be a member of the Enterprise Admins group to complete this step.
You can then use the Enable-ADOptionalFeature cmdlet. The cmdlet requires a
few parameters. You must provide the –Identity of the optional feature,

which you can get using the Get-ADOptionalFeature cmdlet. You must also
provide the –Scope, which is shown in the Get-ADOptionalFeature output, and
the –Target forest fully qualified domain name (FQDN):
$RecycleBin = Get-ADOptionalFeature –Filter * | where ‘
{$_.Name –like “Recycle*”}
Enable-ADOptionalFeature –Identity $RecycleBin –Scope ‘
ForestOrConfigurationSet –Target <domain.com>

Back Up Other Essential Data
In this section, we'll discuss backing up other essential AD data. It may
be necessary to restore only partial components of AD, such as a GPO,
other files and folders, and so on. Some of these components are included
in the System State backup, but you may want to back them up separately
for reasons such as changes being made to GPOs, import/export of GPOs,
and backing up non–AD related programs on the DC.

Creating a Backup of SYSVOL
You may need to restore a single file from your SYSVOL in the event of
accidental deletion. Restoring the system state may be more work than is
required if someone just deleted a startup or logon script. You can use the
Windows Server Backup New-WBFileSpec and Add-WBFileSpec cmdlets to specify
particular files and folders to back up:
$WBPolicy = New-WBPolicy
$WBFileSpec = New-WBFileSpec –FileSpec C:\Windows\SYSVOL
Add-WBFileSpec –Policy $WBPolicy –FileSpec $WBFileSpec
$WBBackupLocation = New-WBBackupTarget –VolumePath D:
Add-WBBackupTarget –Policy $WBPolicy –Target $WBBackupLocation
Start-WBBackup –Policy $WBPolicy

Backing Up Group Policy Objects
You now have the ability to manage GPOs via the PowerShell command
line. This can be done on a Windows Server 2008 R2 DC, a Windows
Server 2008 R2 member server with GPMC installed, or a Windows 7
workstation with Remote Server Administration Tools (RSAT) installed,

so you don't necessarily have to wait until you have 2008 R2 DC.
You can use the Backup-GPO cmdlet after you import the Group Policy

module. The cmdlet requires –All, -GUID, or –Name to specify which GPO(s)
to back up. It also requires –Path for the folder to back up to. The path
must exist, so you may need to create the folder first. Figure 10.2 shows
the return output from these commands:
Import-Module GroupPolicy
Backup-GPO –All –Path C:\GPOBackup

Figure 10.2 The output from Backup-GPO

The Backup-GPO cmdlet can save you time from having to do a system-
state restore in the event of a deleted or corrupt GPO. It also does not
require that you mark the SYSVOL as authoritative to restore the GPO.
Listing 10.2 shows a script that backs up all GPOs and stores them in a

dated folder.

Listing 10.2: Backup-AllGPOs.ps1

File Name: Backup-AllGPOs.ps1
Description:
This script is used to back up all GPOs in a forest and
store them in a dated folder by domain.
##
Backup path to store the GPOs
$GPOBackupDir = “C:\GPOBackups”
Imports the Active Directory and Group Policy Modules
Import-Module ActiveDirectory
Import-Module GroupPolicy
Get the date and create a folder
$date = Get-Date -Format yyyyMMdd
New-Item C:\GPOBackups\$date -ItemType Directory
Get all domains in the forest
$ADDomains = Get-ADForest | select Domains
Execute the backup for each domain
foreach ($Domain in $ADDomains.Domains)
{
 [string]$DomainToBackup = $Domain
 New-Item C:\GPOBackups\$date\$DomainToBackup
 Backup-GPO -All -Domain $DomainToBackup -Path ‘
 C:\GPOBackup\$date\$DomainToBackup
}

Backing Up Domain Controller Certificates
It's important to back up DC certificates if you're using them in your
network. Again, the system-state backup contains these certificates, but
it's much easier to restore them without using a system-state restore.
PowerShell provides a way to connect to the certificate store for both user
and machine using the certificate provider. The provider lets you navigate
the stores as if they were folders on a volume. You gain access by using
t h e cert: drive in Windows PowerShell. Using dir cert: shows the
CurrentUser and LocalMachine store in Figure 10.3:
dir cert:[

Using the cert: provider and the .NET framework, you can export the
certificates to .pfx files. You can change the number in the second line of
the following snippet to select which certificate to export. The certificate
that you want to export must be exportable for the script to work:

$pfxFile = “C:\CertBackup\Cert.pfx” #Update this path
$cert = (dir cert:\LocalMachine\My)[0]
$type = ‘
[System.Security.Cryptography.X509Certificates.X509ContentType]‘
::pfx
$password = Read-Host “Please enter the password to secure the ‘
file with” -AsSecureString
$bytes = $cert.export($type,$password)
[System.IO.File]::WriteAllBytes($pfxFile,$bytes)

Figure 10.3 The output from dir cert:

Backing Up Non-Active Directory Data on Domain
Controllers
There may be other critical applications and files that you need to back
up on your DCs. Using the script below the SYSVOL section shows you how

to back up particular files and folders. You can add multiple selections,
exclusions, nonrecursion, and wildcards to a backup policy. The
following example backs up C:\Windows\SYSVOL, .jpgs under C:\Pictures, and the
C:\otherstuff folder but not subfolders, while excluding .mp3 files in the
C:\otherstuff folder:
$WBPolicy = New-WBPolicy
$WBFileSpec = New-WBFileSpec –FileSpec C:\Windows\SYSVOL
Add-WBFileSpec –Policy $WBPolicy –FileSpec $WBFileSpec
$WBFileSpec2 = New-WBFileSpec –FileSpec C:\pictures*.jpg
Add-WBFileSpec –Policy $WBPolicy –FileSpec $WBFileSpec2
$WBFileSpec3 = New-WBFileSpec –FileSpec C:\otherstuff ‘
-NonRecursive
Add-WBFileSpec –Policy $WBPolicy –FileSpec $WBFileSpec3
$WBFileSpec4 = New-WBFileSpec –FileSpec C:\otherstuff*.mp3 ‘
-Exclude
Add-WBFileSpec –Policy $WBPolicy –FileSpec $WBFileSpec4
$WBBackupLocation = New-WBBackupTarget –VolumePath D:
Add-WBBackupTarget –Policy $WBPolicy –Target $WBBackupLocation
Start-WBBackup –Policy $WBPolicy

One other consideration regarding backing up non-AD DS files is the
system itself. Windows Server Backup supports a bare-metal recovery
(BMR) option, which lets you perform a BMR using Windows Recovery
Environment. When you use the Add-WBBareMetalRecovery cmdlet, the system-
state option is automatically added:
$WBPolicy = New-WBPolicy
Add-WBBareMetalRecovery –Policy $WBPolicy
$WBBackupLocation = New-WBBackupTarget –VolumePath D:
Add-WBBackupTarget –Policy $WBPolicy –Target $WBBackupLocation
Start-WBBackup –Policy $WBPolicy

Make Backups Easier
Now that we've covered the basics of backups, we'll wrap it all together in
this section. We'll discuss backup plans, how to back up to system
volumes, and how to create a backup script.

Creating a Backup Plan
It's important to define a backup plan for your AD DS. To create the
backup plan, you should define your recoverability goals. Because AD is

a multimaster service with data replicated to multiple DCs, this isn't as
hard as it would be for, say, Microsoft Exchange. Table 10.4 shows some
possible goals.

Table 10.4 Examples of AD Recoverability Goals
Scenario Goal

Entire DC fails Restore the DC through BMR.

Database corruption on DC Restore the database using a system-state backup.

Deletion of an OU Use Recycle Bin to restore the OU and objects.

Deletion of a GPO Restore using PowerShell cmdlets.

The plan should include what servers the backup will run on, how often
it will run, what will be backed up, and where the backup will be stored.
It should also take into consideration Flexible Single Master of Operation
(FSMO) roles and the tombstone lifetime. It's recommended that you not
recover a FSMO role holder, but instead rebuild and promote back into
AD, if possible, using a new name.

Tombstone lifetime is also an integral factor. A backup is only good for
the length of time defined by the tombstone lifetime. Table 10.5 lists the
default tombstone lifetime by operating system.

Table 10.5 Default Tombstone Lifetime
Operating System Lifetime

Windows Server 2003 SP1
 Windows Server 2003 SP2
Windows Server 2008
Windows Server 2008 R2

180 Days

Windows 2000 Server
 Windows Server 2003
Windows Server 2003 R2

60 days

Note that if your domain was upgraded from 2000, 2003, or 2003 R2,
then your tombstone lifetime is still 60 days; it's recommended that you
change it to 180 days. Use Get-ADObject to check the value of the tombstone
lifetime. If the attribute is set to <null>, then the default is used, as listed
in Table 10.5:
Get-ADObject -Identity “CN=Directory Service,CN=Windows NT,‘
CN=Services,CN=Configuration,DC=<mydomain>,DC=<com>” ‘
–Propteries tombstoneLifetime

The AD Recycle Bin has a deleted-object lifetime of 180 days. You can
check the value with Get-ADObject. You can also set both of these values
using Set-ADObject:
Get-ADObject -Identity “CN=Directory Service,CN=Windows NT,‘
CN=Services,CN=Configuration,DC=<mydomain>,DC=<com>” ‘
–Properties msDS-DeletedObjectLifetime
Set-ADObject -Identity “CN=Directory Service,CN=Windows NT,‘
CN=Services,CN=Configuration,DC=<mydomain>,DC=<com>” ‘
–Partition “CN=Configuration,DC=<mydomain>,DC=<com>” ‘
–Replace:@{“tombstoneLifetime” = <value>}
Set-ADObject -Identity “CN=Directory Service,CN=Windows NT,‘
CN=Services,CN=Configuration,DC=<mydomain>,DC=<com>” ‘
–Partition “CN=Configuration,DC=<mydomain>,DC=<com>” ‘
–Replace:@{“msDS-DeletedObjectLifetime” = <value>}

It's important to understand these two settings, because your backup's
lifespan is only as long as the lower of the two values. If one is set to 90
days and the other to 180, then your backups can only be used if they
were made in the last 90 days.

Using the Operating System Volume on a Domain
Controller for Backups
By default, Windows Server 2008 R2 doesn't allow system-state backups
to the operating system volume. It isn't recommended that you store
backups on the OS volume because if the volume fails, you lose the
backups too. However, in some situations, it may be necessary to do so. If
that is the case, you can add a Registry entry to override the default
behavior by creating the SystemStateBackup key and AllowSSBToAnyVolume value:
New-Item HKLM:\System\CurrentControlSet\Services\wbengine\‘
SystemStateBackup
Set-ItemProperty HKLM:\System\CurrentControlSet\Services\‘
wbengine\SystemStateBackup -Name “AllowSSBToAnyVolume” ‘
-Type DWORD -Value 1

It's recommended that you use the Full Copy option when storing
system-state backups on the OS volume. You do so using the Set-
WBVssCopyOptions cmdlet with the –VssFullBackup option:
$WBPolicy = New-WBPolicy
Add-WBSystemState –Policy $WBPolicy
$WBBackupLocation = New-WBBackupTarget –VolumePath C:

Add-WBBackupTarget –Policy $WBPolicy –Target $WBBackupLocation
Set-WBVssCopyOptions –Policy $WBPolicy -VssFullBackup
Start-WBBackup –Policy $WBPolicy

Automating Backups with a Script
After a backup plan is in place, it takes only a few lines to implement a
scheduled backup. The Set-WBSchedule cmdlet takes the –Schedule parameter in
24-hour format and accepts multiple schedules. The following example
backup is set to run at 11:00 a.m. and 5:30 p.m. every day. When you
have all your settings, you save the policy using the Set-WBPolicy cmdlet:
$WBPolicy = New-WBPolicy
Set-WBSchedule –Policy $WBPolicy –Schedule 11:00, 17:30
Add-WBSystemState –Policy $WBPolicy
Add-WBBareMetalRecovery –Policy $WBPolicy
$WBBackupLocation = New-WBBackupTarget –VolumePath M:
Add-WBBackupTarget –Policy $WBPolicy –Target $WBBackupLocation
Set-WBPolicy –Policy $WBPolicy

If you decide later to make changes, such as the backup target, times, or
options, you can use the Get-WBPolicy cmdlet with the –Editable parameter:
$WBPolicy = Get-WBPolicy –Editable

This may be suitable for most organizations, but if you need a more
comprehensive backup you can use the script in Listing 10.3 via a
scheduled task. The script provides some additional steps to back up the
GPOs and add them to the backup.

Listing 10.3: Backup-DomainController.ps1

File Name: Backup-DomainController.ps1
Description:
This script is used to back up all the GPOs for this
domain and back up the DC with SystemState and BMR.
##
Backup path to store the GPOs
$GPOBackupDir = “C:\GPOBackups”
Imports the Group Policy and Backup Modules
Import-Module GroupPolicy
Add-PSSnapin windows.serverbackup
Back up the GPOs
Backup-GPO -All -Path C:\GPOBackups
Run the backup
$WBPolicy = New-WBPolicy
Add-WBSystemState -Policy $WBPolicy

Add-WBBareMetalRecovery -Policy $WBPolicy
$WBFileSpec = New-WBFileSpec -FileSpec C:\GPOBackups
Add-WBFileSpec -Policy $WBPolicy -FileSpec $WBFileSpec
Modify below for Backup Target
$WBBackupLocation = New-WBBackupTarget -VolumePath M:
Add-WBBackupTarget -Policy $WBPolicy -Target ‘
$WBBackupLocation
Start-WBBackup -Policy $WBPolicy

Restore Data
In this section, we'll discuss how to properly restore a DC, AD data, and
other data. Most restore procedures don't offer a scripted method to
recover data. This is for a good reason: It prevents a script from running
and restoring bad data into the environment.

Restore Directory Data
There are different disaster scenarios and recovery processes, depending
on what you need to recover. Multiple processes exist for some scenarios.
It's important to understand the options you have when a disaster strikes,
so you can make the best decision about how to proceed. Table 10.6 cover
some scenarios you may encounter when managing AD (it isn't an all-
inclusive list).

Table 10.6 Disaster Scenarios and Recovery Processes
Scenario Process

DC failure with other DCs available
Perform a BMR and non-authoritative restore.
 or
Reinstall Windows and promote back into the AD DS domain into AD DS.

DC failure holding FSMO role Seize the FSMO role to a different DC, and reinstall Windows / promote
back into AD DS domain.

Deletion of an AD object (site, OU, user) with AD
Recycle Bin Restore from AD Recycle Bin.

Deletion of an AD object (site, OU, user) without
AD Recycle Bin Perform an authoritative restore from backup.

Deletion of a GPO Use PowerShell to restore the GPO.

Using the AD Recycle Bin to Restore Data

With the addition of the AD Recycle Bin, it's much easier to restore
objects in AD DS. Using the Get-ADObject and Restore-ADObject cmdlets, you
can restore an object in one line:
Get-ADObject –Filter {string} –IncludeDeletedObjects ‘
| Restore-ADObject

In the –Filter parameter, you specify what you're looking for using
PowerShell Expression Language. For example, if you want to find a user
with the displayName Mary, you use {displayName –eq “Mary”}:
Get-ADObject –Filter {displayName –eq “Mary”} ‘
–IncludeDeletedObjects | Restore-ADObject

Figure 10.4 shows an HR OU with two users and a group, and an
Admins OU with one user and one group. The groups contain their
respective members.

Figure 10.4 OUs, users, and groups to restore

Suppose it's Monday morning, and you get a call from Mary Jones
saying that she can't log in. You do a find in AD, and no objects are
returned. So, you jump to PowerShell:
Get-ADObject –Filter {givenName –eq “Mary”} ‘
–IncludeDeletedObjects

The output returns an object with CN=Mary Jones\0ADEL…, so you realize the
object is deleted. You check its last known parent:
Get-ADObject –Filter {givenName –eq “Mary”} ‘
–IncludeDeletedObjects –Properties lastKnownParent

The lastKnownParent is OU=HR\0ADEL…. Someone deleted an OU. To ensure that
the HR OU is the highest object deleted, you search the Deleted Objects
container, looking for msDs-lastKnownRDN:
Get-ADObject –SearchBase “CN=Deleted Objects,DC=<domain>,‘
DC=<com>” –ldapFilter:“(msDs-LastKnownRDN=HR)” ‘

–IncludeDeletedObjects –Properties lastKnownParent

Now that you know HR was the highest object deleted in the tree, you
can restore starting there. Restore the OU, then the objects under that OU,
and finally the objects under the Admins OU:
Get-ADObject -ldapFilter:“(msDS-LastKnownRDN=HR)” ‘
–IncludeDeletedObjects | Restore-ADObject
Get-ADObject -SearchBase “CN=Deleted Objects,DC=<domain>,‘
DC=<com>” -Filter {lastKnownParent -eq “OU=HR,DC=<domain>,‘
DC=<com>”} -IncludeDeletedObjects | Restore-ADObject
Get-ADObject -SearchBase “CN=Deleted Objects,DC=contoso,DC=com” ‘
-Filter {lastKnownParent -eq “OU=Admins,OU=HR,DC=<domain>,‘
DC=<com>”} -IncludeDeletedObjects | Restore-ADObject

Figure 10.5 shows these steps and a successful restore.

Restoring Deleted Objects Without the AD Recycle
Bin
If you don't have the Recycle Bin enabled, you can restore AD objects
using a process called tombstone reanimation. This process provides a
way to recover objects without having to take the DC offline. It also
restores the objectGUID and objectSID, thus saving you time because you don't
have to fix all the Access Control Lists (ACLs) that pointed at the SID.
There is no way to complete this process using built-in tools at the
command line, so we'll step through using ldp.exe:

Figure 10.5 Output from an AD Recycle Bin restore

1. Log onto a DC as an Enterprise Admin.
2. Open ldp.exe on the DC.
3. Choose Connection → Connect. Click OK.
4. Choose Connection → Bind. Click OK.
5. Choose Browse → Search. Enter CN=Deleted Objects,DC=<domain>,DC=<com>
in the BaseDN box. Enter (objectClass=user in the Filter box. Select One
Level for Scope. Click Options.
6. Select Extended for Search Call Type. Click Controls.
7. Select Return Deleted Objects from the Load Predefined drop-down
menu. Click OK.
8. Click OK. Click Run to run the search.
9. The results are returned, and you must examine them for the

account that was deleted. Copy the DN from the results of the object
you want to restore, such as DN=<user>\0ADEL:<GUID>,NC=Deleted Objects,DC=

<domain>,DC=<com>.
10. Choose Browse → Modify.
11. Paste the copied DN into the DN box. Enter isDeleted in the
Attribute box. Select Delete for Operation. Click Enter. Enter
distinguishedName in the Attribute box. Enter the original DN from where
the object was deleted. Select Replace for Operation. Click Enter.
Click Run.
12. You should get the result Modified CN=<user>\0ADEL:<GUID>,NC=Deleted

Objects,DC=<domain>,DC=<com>.
13. Look at the AD object. Most of the attributes must be repopulated,
but the objectSID is still the same, which is important.

Now that you know how to use built-in tools, there are free tools to do
this through the command line. You can download ADRestore from the
SysInternals Suite and enter adrestore.exe with a search string to return
matching results. The search string can be just the user's first name. Use –
r to restore the object. If more than one object is found, you're prompted
to restore each object:
Adrestore.exe Nicholas
Adrestore.exe –r Nicholas

Restoring Data from a Snapshot Backup
If you're making proper backups or snapshots of your AD, you can restore
an object's attributes by hand from the mounted snapshot. A good
example is when an account is deleted: You can use ADRestore.exe to restore
the object and mount a snapshot to get any account attributes that
ADRestore doesn't recover.

You use the ntdsutil.exe command to list and mount available snapshots.
Once mounted, you can use dsamain.exe to mount the snapshot. You must
provide the dbpath to the mounted snapshot and ldapport. It's recommended
that you use a port like 50001. dsamain.exe will remain running in the

command prompt. Minimize the window to keep it going:
Ntdustil.exe
Snapshot
List all
Mount <#>
Quit
Quit
Dsamain.exe /dbpath C:\$SNAP_<YYYMMDDHHMM>_VOLUME<drive>$\
Windows\NTDS\ntds.dit /ldapport <PortNumber>

After dsamain.exe has mounted the database, you can view it through
Active Directory Users and Computers. Right-click your domain, select
Change Domain Controller, and enter DC:50001 to connect. You can also
mount a PowerShell drive using New-PSDrive. Doing so allows you to use
any of the AD cmdlets to read the objects in the snapshot. Remember, the
snapshot is read-only, so you can't use any of the Set- cmdlets. From here,
you can get the properties of an object and manually copy or enter them
back into the restored object:
New-PSDrive -Name ADSnap -PSProvider ActiveDirectory -Root ‘
“” -Server <server>.<domain>.<com>:<portnumber>
Cd ADSnap
dir
Get-ADUser <user> –Server <server>.<domain>.<com>:<portnumber>

Figure 10.6 shows a mounted snapshot object on the left, the restored
object with missing attributes on the right, and the properties from the
Get-ADUser cmdlet at the bottom. Notice that the mounted snapshot's
attributes are greyed, indicating that they're read only. Also notice that
the restored object doesn't have any populated objects.

Remember to clean up using Remove-PSDrive, press Ctrl+ to kill the
dsamain.exe running, and unmount the snapshot:
Remove-PSDrive ADSnap
Ntdsutil.exe
Snapshot
List Mounted
Unmount <#>
Quit
Quit

Figure 10.6 Object properties

Restoring Data from a System-State Backup
In the unfortunate event that you can't use the AD Recycle Bin, you must
perform an authoritative restore of the objects that were deleted. This is a
bit more complicated, and we hope it will entice you to enable the AD
Recycle Bin as soon as possible. To restore objects, you must first boot
into Directory Services Restore Mode (DSRM). You can force the server
to boot into DSRM using the bcdedit command. It may be a good idea to
reset the DSRM password before rebooting to ensure that you have the
correct password:
Bcdedit /set safeboot dsrepair
Ntdsutil.exe
Set DSRM Password
Reset Password on server localhost
<Enter the password>

<Confirm the password>
Quit
Quit
Shutdown /r /t 000

After you've rebooted into DSRM, log in using the .\Administrator
username and DSRM password. You then can use the Windows Server
Backup console or wbadmin to perform the non-authoritative restore.
Because we're focused on the command line, wbadmin.exe is the tool of
choice. Using the get versions parameter, you can list the available backups
to restore. When you've determine which version to restore, you must use
the start systemstaterecovery parameter, and the version must be exact:
Wbadmin get versions –backuptarget:<targetDrive>:
-machine:<computername>
Wbadmin start systemstaterecovery –version:<MM/DD/YYYY-HH:MM>
-backuptarget:<targetDrive> -machine:<computername> -quiet

Now you have a DC that has been non-authoritatively restored. The
database contains the object(s) that were deleted. You must mark them
authoritative so that when you reboot, the objects are replicated back out.
Use ntdsutil.exe to mark the objects authoritative. You must run activate
instance NTDS and then enter the Authoritative Restore menu. You can use
restore object for one object or restore subtree for an entire OU:
Ntdsutil.exe
Activate instance NTDS
Authoritative Restore
Restore object “CN=<user>,OU=<OU>,DC=<domain>,DC=<com>”
Quit
Quit

The following shows the output from the command:
Successfully updated 1 records.

The following text file with a list of authoritatively restored
objects has been created in the current working directory:
ar_YYYMMDD-HHMMSS_objects.txt

One or more specified objects have back-links in this domain.
The following LDIF files with link restore operations have been
created in the current working directory: ar_YYYYMMDD-HHMMSS_
links_<domain>.<com>.ldf

Authoritative Restore completed successfully.

Restart the server into normal operations. Then, use bcdedit to set the

boot options:
Bcdedit /deletevalue safeboot
Shutdown /r /t 000

After you reboot, you'll need to restore the back-links if the restore
found any. Use the ldifde.exe utility to import the created back-link LDAP
Data Interchange Format (LDIF) file:
Ldifde.exe –i –k –f ar_YYYYMMDD-HHMMSS_links_<domain>.<com>.ldf

Remotely Puting a Domain Controller into
Recovery Mode
In some scenarios, it may not be possible to be physically at the DC
during a system-state restore. In such cases, you can use the Remote
Desktop Client to remote into the server. Run the bcdedit and shutdown
commands to reboot the server into DSRM:
Bcdedit /set safeboot dsrepair
Shutdown /r /t 000

After the server reboots, you can use the Remote Desktop Client to
remote into the DC. You must use the <servername>\administrator format to
log into the server. Figure 10.7 shows the RD client and authentication.
This is a great solution when your DC is offsite in a branch office or
datacenter.

Restore Other Essential Data
It may be necessary to restore other AD data that doesn't use the AD
Recycle Bin or can be restored without a system-state restore. This
section will discuss how to restore these other data sets.

Restoring SYSVOL from Backup
Before you can restore SYSVOL, it's imperative to know which replication
system is being used. You use the dfsrmig.exe command to determine the
status of SYSVOL:

dfsrmig.exe /getglobalstate

Figure 10.7 Remotely connecting into DC in DSRM mode

Table 10.7 lists the different states.

Table 10.7 SYSVOL States
State What is used for replication

Start (state 0) File Replication System (FRS) is servicing requests; no Distributed File System Replication (DFSR).

Prepared (state 1) FRS is servicing; DFSR is replicating.

Redirected (state 2) FRS is replicating; DFSR is servicing.

Eliminated (state 3) No FRS; DFSR is servicing.

When you determine which state you're in, you can decide which
process to use to restore SYSVOL. If you're using FRS, set the BUR flag and
restart the FRS service to perform a non-authoritative restore. The Set-
ItemProperty and Restart-Service cmdlets get this done quickly. The FRS

service replicates from another DC, restoring the data:
Set-ItemProperty “HKLM:\System\CurrentControlSet\Services\NtFrs‘
\Parameters\Backup/Restore\Process at Startup” –Name BurFlags ‘
–Value 210
Restart-Service ntFrs

To perform an authoritative restore, you must determine whether the
DC has the correct data. If the data is good, you must stop FRS on all
other DCs in the domain, set the BUR flag to D4, restart FRS, set the BUR
flag to D2 on all other DCs, and restart FRS. If the data isn't good, you
may need to restore the data from a backup. You can stop SYSVOL, use the
Windows Server Backup console to restore SYSVOL, mark the BUR flag to D4,
and start FRS. You still need to set all other DCs to D2 and restart FRS:
$
Name = $env:COMPUTERNAME
$colDCs = Get-ADComputer -SearchBase “OU=Domain Controllers,‘
DC=<domain>,DC=<com> -Filter ‘Name –ne $Name’
Invoke-Command –InputObject $colDCS –ScriptBlock {Stop-Service ‘
ntFRS –Force}
Invoke-Command –InputObject $colDCS –ScriptBlock {Set-Service ‘
ntFRS –StartupType Disabled}
Stop-Service ntfrs
Wbadmin.msc #Restore the SYSVOL Folder if needed
Set-ItemProperty “HKLM:\System\CurrentControlSet\Services\‘
NtFrs\Parameters\Backup/Restore\Process at Startup” ‘
–Name BurFlags –Value 212
Start-Service ntfrs
Invoke-Command –InputObject $colDCS –ScriptBlock ‘
{Set-ItemProperty “HKLM:\System\CurrentControlSet\Services\‘
NtFrs\Parameters\Backup/Restore\Process at Startup” ‘
–Name BurFlags –Value 210}
Invoke-Command –InputObject $colDCS –ScriptBlock ‘
{Start-Service ntfrs}

Restoring Group Policies from Backup
You should be using the Backup-GPOs cmdlet to back up all your GPOs
before running Windows Server Backup. You can restore a GPO using the
Restore-GPO cmdlet as long as a GPO with the same name still exists in the
domain. Doing so restores a GPO's settings if someone makes an
accidental change:
Restore-GPO <GPOName> -Path <LocationOfGPOBackups>

If someone deletes the GPO, you can use the New-GPO cmdlet to create a

blank GPO; then, restore the original and delete the blank. The GPO links
aren't restored, but all the settings are:
New-GPO <GPOName>
Restore-GPO <GPOName> -Path <LocationOfGPOBackups>

You can also import a backed-up GPO's settings using the Import-GPO
cmdlet. You must specify –TargetName, -BackupGPOName, and –Path.
Import-GPO –TargetName <TargetGPO> -BackupGPOName <GPOName> ‘
-Path < LocationOfGPOBackups>

Restoring Domain Controller Certificates from
Backup
Using .NET Framework and PowerShell, you can import certificates back
into the certificate store. You can easily convert the following code into a
prompting script:
$pfxFile = “C:\CertBackup\Cert.pfx” #Update this path
$cert = New-Object ‘
System.Security.Cryptography.X509Certificates.X509Certificate2
$password = Read-Host “Please enter the password to secure ‘
the file with” -AsSecureString
$cert.Import($pfxFile,$password,[System.Security.Cryptography.‘
X509Certificates.X509KeyStorageFlags]“Exportable”)
$store = New-Object System.Security.Cryptography.‘
X509Certificates.X509Store -argumentlist “MY”, LocalMachine
$store.Open([System.Security.Cryptography.X509Certificates.‘
OpenFlags]“ReadWrite”)
$store.Add($cert)

Chapter 11

Monitoring Health and Performance

IN THIS CHAPTER, YOU WILL LEARN TO:
KEEP ACTIVE DIRECTORY HEALTHY

Enable Logging
Check the Health of Domain Controllers

TRACK DOMAIN CONTROLLER PERFORMANCE
Monitor Active Directory Performance
Monitor Domain Controller Hardware

In this chapter, we'll focus on perhaps the most important aspect of
Active Directory administration: ensuring that your Domain Controllers
are healthy and performing well. A variety of tools and mechanisms are
available to help you accomplish this. But because this book is focused
on PowerShell, we're going to show you how to do a lot of the health and
performance checks using PowerShell cmdlets and scripts. Often, when
managing the health and performance of DCs, you're required to
configure settings on a per-DC basis. When situations like this arise,
using a script can make your life much easier. Throughout this chapter,
we've provided scripts that you can use verbatim to ensure the health and
performance of your AD environment.

Keep Active Directory Healthy
What does it mean to keep AD healthy? The health of AD (or any
computer system, for that matter) is really broken into two parts: the

proactive and the reactive. When you're keeping your AD proactively
healthy, you're regularly performing tasks that monitor and maintain your
domain to ensure that nothing unexpected happens. This includes things
like keeping an eye on system events and proactively monitoring for free
disk space.

No matter how good a job you do proactively with AD, you'll always be
forced into reactive mode every now and then. In reactive mode, you're
trying to determine why something is broken or not working as expected,
and then you're figuring out what to change to resolve the issue. In this
section, we'll provide you with guidance scripts for maintaining AD
health from both the proactive and reactive perspectives.

Enable Logging
Enabling logging on DCs is really more of a reactive event. The type of
logging we're talking about in this section you'll only want to enable
when you're troubleshooting a problem. These logging mechanisms can
give you some detailed information about various components of AD and
make your troubleshooting go a lot more smoothly.

Enabling Kerberos Event Logging
When authentication is negotiated in Windows, the Kerberos
authentication protocol is the preferred choice. The NT LAN Manager
(NTLM), the second choice, is a weaker protocol that takes the direct
client-to-server approach of generating a message hash and verifying it.
Kerberos, on the other hand, uses three parties: a client, a server, and a
Kerberos Key Distribution Center (a DC in AD). The KDC is trusted by
both the client and the server, so it has the ability to issue tickets for
each. When a client accesses a server, the KDC gives the client a ticket,
which it can give to the server. The server uses the information inside the
ticket to securely communicate with the client.

Because multiple parties are involved in this exchange, troubleshooting

Kerberos problems can be tough. Typically, you can determine whether
an authentication problem is caused by Kerberos issues by examining the
system-event log and the security-event log of a DC. Because Kerberos is
preferred and NTLM is the fallback authentication mechanism, a
successful NTLM logon event may indicate problems with Kerberos. If
there are any Kerberos errors, you'll find a Kerberos error code in the
system log, and the source of the event will include the word Kerberos,
KDC, or LsaSrv, as shown in Figure 11.1.

Figure 11.1 An example of a Kerberos error reported in the system log

In the security log, you'll want to look for account logon and account
logoff events, which indicate whether Kerberos or NTLM was used (see
Figure 11.2).

Figure 11.2 A Kerberos account logon event recorded in the Security log

You can enable the Kerberos error log by setting the LogLevel key in
following Registry path:
HKLM\System\CurrentControlSet\Control\Lsa\Kerberos\Parameters\

The LogLevel key is a DWORD value, and you can set it to 1 to enable the
Kerberos event logging.

If the key doesn't already exist, you can create it from scratch. The
change takes effect immediately, so there is nothing more to do after the
key is set. Keeping the Kerberos log enabled can cause excessive error
logging and negatively impact the performance of your DC. Therefore,
you'll only want to enable it when you need to troubleshoot Kerberos
problems.

When troubleshooting Kerberos errors, there is the potential for some
false positive event log entries. Some events that show up in the log as an
error can be safely ignored. In particular, event logs with Event ID 3 and

that contain either a KDC_ERR_BADOPTION or
KDC_ERR_PREAUTH_REQUIRED error code can probably be ignored
if the user can still successfully log in. There are several error codes,
however, that you shouldn't ignore. Table 11.1 lists error codes and
potential resolutions for some of the common problems that you may
encounter.

Table 11.1 Potential Kerberos Error Codes
Error Code Description

KDC_ERR_C_PRINCIPAL_UNKNOWN The DC can't find the user in the domain. Make sure the account exists.

KDC_ERR_S_PRINCIPAL_UNKNOWN The DC can't find an account for the computer to which the user is requesting a
ticket. Ensure that the service principal name (SPN) exists for the service.

KDC_ERR_PRINCIPAL_NOT_UNIQUE
The SPN of the server for which the user is requesting a ticket exists on multiple
accounts. SPNs must be unique and therefore can only be tied to one computer
object.

KDC_ERR_PADATA_TYPE_NOSUPP
The user is attempting to log on with a smart card, and the certificate can't be found.
Ensure that the certificate for the user is valid and that the certificate authority (CA)
can be contacted.

KDC_ERR_CLIENT_REVOKED The user account is probably disabled, expired, or locked out.

KDC_ERR_KEY_EXPIRED The user's password has expired and must be changed before the Kerberos ticket can
be received.

KDC_ERR_PREAUTH_FAILED The user probably entered the wrong password.

KRB_AP_ERR_SKEW The clock on the user's computer differs from the DC's clock by more than 5
minutes. Ensure that time synchronization is working correctly.

KRB_AP_ERR_MODIFIED Ensure that an SPN is set on the service the user is trying to access. Also ensure that
DNS is configured correctly.

KRB_ERR_RESPONSE_TOO_BIG
The Kerberos ticket is too big to be transferred over UDP. The DC will fall back to
TCP. If the client is a non-Windows client that doesn't support TPC fall-back (such as
a Java application), you may have to force the DC to use TCP instead of UDP.

You can enable the Kerberos error log via PowerShell with the Set-
ItemProperty cmdlet. If the LogLevel key doesn't yet exist, the following
command will create it and set its value to 1. Otherwise, it will modify
the key's existing value and change it to 1:
Set-ItemProperty HKLM:\System\CurrentControlSet\Control\LSA\
 Kerberos\Parameters -Name “LogLevel” -Type DWORD -Value 1

To disable Kerberos logging, you can either delete the key or set its
value to 0. Again, this change takes effect immediately, so there is no
need to reboot or restart any services. The following PowerShell cmdlet
removes the key:

Remove-ItemProperty HKLM:\System\CurrentControlSet\Control\LSA\
 Kerberos\Parameters -Name “LogLevel”

One of the nuances of Kerberos event logging is that it must be enabled
on each DC independently. However, Kerberos logons can potentially
occur on any DC in the site or even in the domain. Therefore, if you're
capturing logs to troubleshoot an issue, you'll probably want to enable the
logs on multiple DCs. As with anything that requires some level of
repetition, PowerShell can make this process easier. You can use the
following PowerShell commands to enable Kerberos event logging on
remote DCs. The following example enables the logs on BAL-DC01:
$reg = [Microsoft.Win32.Registry]::OpenRemoteBaseKey(
 ‘LocalMachine’, “BAL-DC01”)

$key = $reg.OpenSubKey(“System\CurrentControlSet\Control\Lsa\
 Kerberos\Parameters”, $true)
$key.SetValue(“LogLevel”, 1, “DWORD”)

The first line calls the OpenRemoteBaseKey method, which is a method in the
.NET RegistryKey class. This method takes the name of the hive as its first
parameter (LocalMachine means HKEY_LOCAL_MACHINE [HKLM] in this case) and
the name of the server that you're remotely connecting to as the second
parameter. Table 11.2 lists the other hives that you can use with this
command:

Table 11.2 Registry Hives for Use With the OpenRemoteBaseKey
Method
Hive Name Name to Use in the Method
HKEY_CLASSES_ROOT ClassesRoot

HKEY_CURRENT_USER CurrentUser

HKEY_LOCAL_MACHINE LocalMachine

HKEY_USERS Users

HKEY_PERFORMANCE_DATA PerformanceData

HKEY_CURRENT_CONFIG CurrentConfig

HKEY_DYN_DATA DynData

After the base Registry hive is opened, you can then use the OpenSubKey
method to open a specific Registry subkey path. The previous example
opens the path straight to the subkey where the LogLevel value should be
created. When you opened the subkey, you passed in $true as the second

parameter. This is necessary when you need to open the subkey for
editing. If you omit this parameter, you'll receive an error when
attempting to write a Registry value to the subkey.

The last line of the example creates the LogLevel value by using the
SetValue method. In this case, you create the value as a DWORD by specifying
it as the method's third parameter. For the second parameter, you specify
that LogLevel should contain the value of 1, which enables Kerberos event
logging.

To disable Kerberos event logging on a remote DC, you need to delete
the LogLevel value. The following PowerShell commands will accomplish
this:
$reg = [Microsoft.Win32.Registry]::OpenRemoteBaseKey(
 ‘LocalMachine’, “BAL-DC01”)

$key = $reg.OpenSubKey(“System\CurrentControlSet\Control\Lsa\
 Kerberos\Parameters”, $true)
$key.DeleteValue(“LogLevel”)

In this case, the first two lines are the same as when you are creating
the LogLevel value. The third line, however, uses the DeleteValue method to
delete the LogLevel value.

Now that you know how to enable or disable Kerberos event logging on
each DC, let's put it all together. The script in Listing 11.1 will allow you
to either enable or disable Kerberos logging on one or all DCs in the
domain. This script uses the AD module for PowerShell to enumerate the
DCs in the domain, so you need to ensure that you run this on a Windows
7 or Windows Server 2008 R2 client and have a Windows Server 2008 R2
DC or a DC with the Active Directory Management Gateway installed.

Listing 11.1: set_kerb_logging.ps1

File Name: set_kerb_logging.ps1
Description:
Enables or disables Kerberos event logging on one or all
Domain Controllers in the current domain.
##
param([switch]$Enable, [switch]$Disable, [string]$DCName=””)
Import the AD Module if it isn't already imported
Import-Module ActiveDirectory

Removes Kerberos logging from the specified Domain Controller
function DeleteLogLevel($dc_name)
{
 $reg = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(
 “LocalMachine”, $dc_name)
 $key = $reg.OpenSubKey(“System\CurrentControlSet\Control\”+
 “Lsa\Kerberos\Parameters”, $true)

 $val = $key.GetValue(“LogLevel”)
 if ($val -ne $null)
 {
 $key.DeleteValue(“LogLevel”)
 }
 Write-Host “Disabled on: “ $dc_name
}
Enables Kerberos logging on the specified Domain Controller
function CreateLogLevel($dc_name)
{
 $reg = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(
 “LocalMachine”, $dc_name)
 $key = $reg.OpenSubKey(“System\CurrentControlSet\Control\”+
 “Lsa\Kerberos\Parameters”, $true)
 $key.SetValue(“LogLevel”, 1, “DWORD”)

 Write-Host “Enabled on: “ $dc_name
}
If the name of a Domain Controller was specified, enable or
disable logging on that specific Domain Controller
if ($DCName.Length -gt 0)
{
 if ($Enable)
 {
 CreateLogLevel $DCName
 }
 else
 {
 DeleteLogLevel $DCName
 }
}
Otherwise, enumerate all Domain Controllers in the domain
else
{
 $objForest = Get-ADForest
 $colDomains = $objForest.Domains
 foreach ($strDomain in $colDomains)
 {
 $objDomain = Get-ADDomain $strDomain
 $DCCN = $objDomain.DomainControllersContainer
 $colDCs = Get-ADComputer -SearchBase $DCCN -Filter *
 foreach ($objDC in $colDCs)
 {
 if ($Enable)
 {
 CreateLogLevel $objDC.DNSHostName
 }

 else
 {
 DeleteLogLevel $objDC.DNSHostName
 }
 }
 Write-Host
 }
}

Enabling Diagnostic Logs
You may have noticed that DCs contain a Directory Service event log.
But often, when AD problems arise, this log doesn't contain much
information about what problem may be happening. By default, this log is
only configured to contain high-level information about warnings and
errors that occur in the Directory Service. Because of this, each DC has
the ability to adjust the level of diagnostic detail that is logged for
specific components of AD. Table 11.3 lists each component in which
diagnostic logging can be enabled.

Table 11.3 Active Directory Components That Can Be Enabled for
Diagnostic Logging
Component Description

1 Knowledge
Consistency Checker Events about the component in Active Directory that creates connection objects between DCs.

2 Security Events Security events recorded by DCsAD.

3 ExDS Interface Events Diagnostic events pertaining to Exchange clients interfacing with AD.

4 MAPI Interface Events Events for Messaging API (MAPI) clients that communicate with AD in older versions of Exchange
Server and Outlook.

5 Replication Events Events pertaining to replication of directory data between DCs.

6 Garbage Collection Events about the garbage collection process, which is used to remove Active Directory data that is no
longer needed.

7 Internal Configuration Events that are related to the internal configuration of AD. If there are internal errors, they may be
logged when this diagnostic log is enabled.

8 Directory Access Events pertaining to read and write operations to directory objects.

9 Internal Processing Events that are often paired with other diagnostic logs to enable more specific information about the
error encountered.

10 Performance Counters Detailed events about performance-counter information.

11
Initialization/Termination

NTDS initialization and termination events, which are recorded when the directory services are
started and stopped.

12 Service Control Events pertaining to the AD services.

13 Name Resolution Events that relate to resolving host names to IP addresses.

14 Backup Events that are encountered when backing up AD.

15 Field Engineering Events that are often used for troubleshooting inefficient LDAP queries.

16 LDAP Interface
Events Events about LDAP errors with additional detail.

17 Setup Events related to AD setup errors.

18 Global Catalog Events related to the Global Catalog.

19 Inter-site Messaging Events related to inter-site messaging.

20 Group Caching Events related to group caching.

21 Linked-Value
Replication

Events pertaining to linked-value replication (LVR), which was a feature added in Windows Server
2003 to allow a subset of a multivalued linked attribute to be replicated instead of the entire attribute.

22 DS RPC Client
Events in this category are valid when the DC is acting as an RPC client. This may include events
such as RPC errors, cancelled calls, failures with name resolution, and operations involving service
principal names (SPNs).

23 DS RPC Server
Events that are valid when the DC is acting as an RPC server. Some of the events recorded in this log
might be for outbound replication, replication setup, cross-domain moves, group membership
queries, or lookups made by clients.

24 DS Schema Schema-related events, such as additions, deletions, modifications, lookup, and caching errors.

This diagnostic logging is enabled on each DC independently. When
working with diagnostic logs, sometimes you may have to enable
diagnostic logging on multiple DCs in order to understand the problem
that is occurring. Enabling these logs puts additional strain on the
performance of the DC. Therefore, it's important to ensure that you only
enable diagnostic logging when you need it. These logs are all disabled
by default. The Registry key that houses these logs is
HKLM\System\CurrentControlSet\Services\NTDS\Diagnostics

These values are displayed in Figure 11.3.

Figure 11.3 The diagnostic log values are already present in the Registry.

To enable the diagnostic logs, you can set the Registry value that
corresponds to the component listed in Table 11.3. Each of these Registry
values can be a DWORD value between 0 and 5, where 0 means the log is
disabled and 5 means the diagnostic reporting is the most verbose. We
recommend that when you're troubleshooting events using the diagnostic
logs, you begin by setting the necessary components to 1 and then work
your way up in detail as you need more information.

To enable or disable these logs, you can modify the Registry using the
methods we've been discussing throughout this book. We've provided a
few scripts to help you when you're working with the diagnostic logs. The
first script, set_ntds_log.ps1, allows you to enable a diagnostic log by its
number on the DC that you specify (see Listing 11.2).

Listing 11.2: set_ntds_log.ps1

File Name: set_ntds_log.ps1
Description:
Sets the diagnostic logging level of a particular Domain
Controller.
##
param([string]$LogNumber=””, [string]$LogLevel,
 [string]$DCName=””)
if ($LogLevel -eq “”) { $LogLevel = 0 }
if ($DCName -eq “”) { $DCName = “.” }
$reg = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(
 “LocalMachine”, $DCName)
$key = $reg.OpenSubKey(”System\CurrentControlSet\Services\”+
 “NTDS\Diagnostics”, $true)
$value_name = “1 Knowledge Consistency Checker”
if ($LogNumber -eq “2”) {
 $value_name = “2 Security Events” }
if ($LogNumber -eq “3”) {
 $value_name = “3 ExDS Interface Events” }
if ($LogNumber -eq “4”) {
 $value_name = “4 MAPI Interface Events” }
if ($LogNumber -eq “5”) {
 $value_name = “5 Replication Events” }
if ($LogNumber -eq “6”) {
 $value_name = “6 Garbage Collection” }
if ($LogNumber -eq “7”) {
 $value_name = “7 Internal Configuration” }
if ($LogNumber -eq “8”) {
 $value_name = “8 Directory Access” }
if ($LogNumber -eq “9”) {
 $value_name = “9 Internal Processing” }
if ($LogNumber -eq “10”) {
 $value_name = “10 Performance Counters” }
if ($LogNumber -eq “11”) {
 $value_name = “11 Initialization/Termination” }
if ($LogNumber -eq “12”) {
 $value_name = “12 Service Control” }
if ($LogNumber -eq “13”) {
 $value_name = “13 Name Resolution” }
if ($LogNumber -eq “14”) {
 $value_name = “14 Backup” }
if ($LogNumber -eq “15”) {
 $value_name = “15 Field Engineering” }
if ($LogNumber -eq “16”) {
 $value_name = “16 LDAP Interface Events” }
if ($LogNumber -eq “17”) {
 $value_name = “17 Setup” }
if ($LogNumber -eq “18”) {
 $value_name = “18 Global Catalog” }
if ($LogNumber -eq “19”) {
 $value_name = “19 Inter-site Messaging” }
if ($LogNumber -eq “20”) {
 $value_name = “20 Group Caching” }

if ($LogNumber -eq “21”) {
 $value_name = “21 Linked-Value Replication” }
if ($LogNumber -eq “22”) {
 $value_name = “22 DS RPC Client” }
if ($LogNumber -eq “23”) {
 $value_name = “23 DS RPC Server” }
if ($LogNumber -eq “24”) {
 $value_name = “24 DS Schema” }
$key.SetValue($value_name, $LogLevel, “DWORD”)
Write-Host $value_name “set on “ $DCName

The next script, in Listing 11.3, lets you get a list of the diagnostic logs
that are enabled on a DC. You can run the script against the DC you're
currently logged in at or specify the DC via the DCName parameter.

Listing 11.3: get_ntds_log_settings.ps1

File Name: get_ntds_log_settings.ps1
Description:
Retrieves the diagnostic logging level of a particular
Domain Controller.
##
param([string]$DCName=””)
Write-Host “NTDS Diagnostic Settings on “ $DCName
Write-Host
$reg = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(
 “LocalMachine”, $DCName)
$key = $reg.OpenSubKey(“System\CurrentControlSet\Services\”+
 “NTDS\Diagnostics”)
$values = $key.GetValueNames()
foreach ($value in $values)
{
 $level = $key.GetValue($value)
 if ($level -ne “0”)
 {
 Write-Host $value “enabled at level “ $level
 }
}
Write-Host

The last script we're providing for diagnostic logging combs through
the DCs in your domain and disables the diagnostic logs on every DC (see
Listing 11.4). This script uses the AD module for PowerShell, so you
need to make sure you're running it on a Windows 7 or Windows Server
2008 R2 client. You also need to have a Windows Server 2008 R2 DC or
an older DC that is running the Active Directory Management Gateway.

Listing 11.4: disable_ntds_logging.ps1

File Name: disable_ntds_logging.ps1
Description:
Combs through every Domain Controller in the domain and
disables NTDS diagnostic logging on the DC.
##
Import the AD Module if it isn't already imported
Import-Module ActiveDirectory
Enumerate the domains in the forest
$objForest = Get-ADForest
$colDomains = $objForest.Domains
foreach ($strDomain in $colDomains)
{
 $objDomain = Get-ADDomain $strDomain
 $colDCs = $objDomain.ReplicaDirectoryServers
 # Enumerate the Domain Controllers in each domain
 foreach ($dc in $colDCs)
 {
 # Reset the NTDS Diagnostic logging values on each DC
 $obj_dc = Get-ADDomainController $dc
 $reg = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(
 “LocalMachine”, $obj_dc.Name)
 $key = $reg.OpenSubKey(“System\CurrentControlSet\”+
 “Services\NTDS\Diagnostics”, $true)
 $values = $key.GetValueNames()
 foreach ($value in $values)
 {
 $key.SetValue($value, 0, “DWORD”)
 }
 Write-Host $obj_dc.Name “: NTDS Diagnostic logs “+
 “disabled”
 }
 Write-Host
}

Check the Health of Domain Controllers
One of the key things you can do to ensure that your DCs are healthy is
proactively stay on top of certain key aspects of the DCs. In this section,
we'll walk you through using PowerShell to check the following factors
of health on DCs in your domain, both locally and remotely:

Ensuring that the essential services are running
Verifying that you have adequate disk space to meeting your future
growth needs
Monitoring events thrown by the DC's event logs

Reporting on operating system version, service pack version, and
hotfix level

Determining Whether the Required Services Are
Running
In order for a DC to operate correctly, a number of services must be
running on the DC. It's important to check the services listed in Table
11.4 on each DC.

Table 11.4 Important DC Services
Service
Name

Description

COM+
Event
System

Used for components that are based on the Component Object Model (COM).

Remote
Procedure
Call (RPC)

Used to perform Remote Procedure Calls (RPCs) for COM and DCOM services.

Active
Directory
Domain
Services

The service under which AD runs.

DNS Client The client component of DNS. Without this service, the DC can't resolve queries to locate other DCs.

DFS
Replication

Replaces the File Replication System (FRS) for SYSVOL replication. Without this service, SYSVOL won't be replicated
to or from the DC.

Intersite
Messaging Allows DCs to send and receive messages with DCs in other sites.

Kerberos
Key
Distribution
Center

The Authentication Service and Ticket Granting Service that distributes Kerberos tickets to clients. Without this
service, Kerberos won't work.

Security
Accounts
Manager

Used for local accounts on the DC. If this service is disabled, other services may not start.

Server Provides host services from the DC. If the Server service isn't started, file sharing, print sharing, and named-pipe
sharing won't work.

Workstation Used for establishing client-side SMB (Server Message Block) connections. This is required for SMB
communication to other DCs.

Windows
Time

Used to synchronize time throughout the domain. This is particularly important on DCs because time
synchronization is used for replay detection in Kerberos authentication. Also, DCs serve as a time-synchronization
source in the domain. Clients who authenticate against this DC will have their clocks synchronized by it.

Netlogon Performs many duties, but is primarily responsible for maintaining secure channel connections for this DC.

It's important to ensure that all these services are enabled. You can do
this on the DC that you're currently logged in at by running the Get-Service

cmdlet in PowerShell. You'll probably want to check these services on all
DCs in your domain or forest. In order to check a service remotely, you
need to use the ComputerName parameter. For example, to check the status of
the AD Domain Services (NTDS) service on BAL-DC01, you can run the
following command:
Get-Service -ComputerName BAL-DC01 ntds

The following script in Listing 11.5 will enumerate all of the DCs in the
forest and check to see if the critical services are running on them.

Listing 11.5: check_dc_services.ps1

File Name: check_dc_services.ps1
Description:
Enumerates every Domain Controller in the forest and ensures
that the services are running that are critical to the
operation of Active Directory.
##
Imports the Active Directory Module if it hasn't already been
imported
Import-Module ActiveDirectory
An array of each service that is checked
$services = “EventSystem”, # COM+ Event Service
 “RpcSs”, # Remote Procedure Call (RPC)
 “NTDS”, # Active Directory Domain Services
 “DnsCache”, # DNS Client
 “DFSR”, # DFS Replication
 “IsmServ”, # Intersite Messaging
 “kdc”, # Kerberos Key Distribution Center
 “SamSs”, # Security Accounts Manager
 “LanmanServer”, # Server
 “LanmanWorkstation”, # Workstation
 “w32time”, # Windows Time
 “NETLOGON” # Netlogon
Checks the services on the specified DC
function check_services($dc_name)
{
 $any_stopped = $false
 Write-Host
 Write-Host “$($dc_name): “ -NoNewLine
 # Check the status of each service in the list
 foreach ($svc in $services)
 {
 $status = Get-Service -ComputerName $dc_name $svc
 if ($status.Status -ne “Running”)
 {
 $any_stopped = $true
 Write-Host
 Write-Host “Service Stopped: $svc” -NoNewLine

 }
 }
 if ($any_stopped -eq $false)
 {
 Write-Host “OK”
 }
 else { Write-Host }
}
Enumerate each of the domains in the current forest
$objForest = Get-ADForest
$colDomains = $objForest.Domains
foreach ($strDomain in $colDomains)
{
 $objDomain = Get-ADDomain $strDomain
 $DCCN = $objDomain.DomainControllersContainer
 $colDCs = Get-ADComputer -SearchBase $DCCN -Filter *
 # Enumerate each Domain Controller in the domain
 foreach ($objDC in $colDCs)
 {
 check_services $objDC.DNSHostName
 }
 Write-Host
}

Viewing the Available Disk Space across All
Domain Controllers
As with any other Windows server, AD requires that adequate disk space
be available on each DC. For a DC, there are various aspects to determine
how much space you need to have available. The DC stores the AD data
to a database file called NTDS.DIT, which uses the Extensible Storage Engine
(ESE) to read data from and write data to the database. The ESE requires
that adequate space be available for writing database transaction logs and
to grow the database as necessary. The amount of space required for
future growth depends on how many objects you plan to add, the type of
objects, and the number and length of attributes that you'll be populating
for each attribute. AD allocates space in the database on demand for each
attribute that is populated, so the database will grow according to the data
that is held within it.

As a general rule of thumb, most people gauge the amount of needed
disk space by allocating 400 MB of space for every 10,000 users.
Therefore, if you plan to grow your domain by 20,000 accounts, for

example, you should ensure that at least 800 MB of space is available on
the partition that holds the directory database.

One thing that affects this calculation is whether the DC is also a
Global Catalog server. If the DC is a GC, it holds data from other
domains as well, so you'll need to ensure that there is enough space for
growth across all the domains in your forest. GCs require an additional
amount of space equal to about 50% of the size of other domains.
Therefore, if Domain A requires 2 GB of space and Domain B requires 1
GB of space, a GC in Domain A will require at least 2.5 GB of space plus
free space for additional growth. A GC in Domain B will require 2 GB of
space plus free space for additional growth.

Another factor for calculating necessary disk space is to ensure that
there is adequate space for the drive hosting the SYSVOL folder. The rule of
thumb that most people follow here is to ensure that at least 500 MB is
available in the partition, although in reality SYSVOL shouldn't be any larger
than necessary. You should make sure there is enough disk space to not
trigger any low-disk-space alerts and to account for any expected SYSVOL
growth. Because SYSVOL is replicated among DCs, you'll want to make sure
every DC in the domain meets the minimum amount of space that you
determine is necessary.

For the OS partition, make sure at least 2 GB of space is available. The
reason for this is to ensure that there is adequate space on your DCs for
service packs and hotfixes that you may be installing in the future.

To check the disk space using a PowerShell script, you'll need to do a
couple of things. First, determine which local drives on the DC house the
OS partition, NTDS.DIT, and SYSVOL. This data is accessible via Registry
values on the DC. Table 11.5 shows which Registry values contain this
information.

Table 11.5 Registry Locations for the Disk Information of Various DC
Components

Location

OS location HKLM\Software\Microsoft\Windows NT\CurrentVersion\SystemRoot

NTDS.DIT HKLM\System\CurrentControlSet\Services\NTDS\Parameters\DSA Working Directory

SYSVOL HKLM\System\CurrentControlSet\Services\Netlogon\Parameters\SysVol

You can use the remote Registry commands discussed earlier in this
chapter to connect to a DC and gather this information. For example, the
following commands gather the location of NTDS.DIT on DC BAL-
DC01:
$reg = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(
 “LocalMachine”, “BAL-DC01”)

$key_ntds = $reg.OpenSubKey(“System\CurrentControlSet\Services\
 NTDS\Parameters”)
$ntds_dir = $key_ntds.GetValue(“DSA Working Directory”)

The contents of the $ntds_dir variable are the working folder used for
NTDS.DIT. This value is a folder path, such as C:\Windows\NTDS. To get the
drive letter for this folder, you can parse the folder path by splitting the
string at the forward slashes. To split off the drive letter and store it in a
separate variable, you can use the following command. The value of the
resulting variable ($ntds_drive) is C:, which you'll use in a WMI query to
the DC remotely:
$ntds_drive = $ntds_dir.Split(“\”)[0]

Now that you have the drive letter, you can perform a WMI query to the
DC and ask for the information on that specific drive. To do this, you use
the Get-WmiObject cmdlet and specify the Win32_LogicalDisk class.

In the command, you use a filter to ensure that you only return the drive
letter of the drive you're looking for. The filter matches up the DeviceID
property with the drive letter in Windows. So if $ntds_drive contains the
value of “C:”, the WMI query looks like this:
Get-WmiObject Win32_LogicalDisk -ComputerName “BAL-DC01” -Filter
 “DeviceID=‘$ntds_drive’”

Putting these techniques together, Listing 11.6 enumerates all the DCs
in the forest and checks the drive space on each one. This script doesn't
dynamically determine how much drive space is needed on each DC. The
minimums you want to check for are specified as variables at the
beginning of the script; you can adjust these variables to meet the needs

of your environment. By default, the script checks for the following
minimums:

OS drive: 2 GB free space
SYSVOL drive: 500 MB free space
NTDS drive for DCs that don't host the Global Catalog: 400 MB free
space
NTDS drive for Global Catalog Servers: 600 MB free space

Listing 11.6: check_drive_space.ps1

File Name: check_drive_space.ps1
Description:
Enumerates every Domain Controller in the forest and checks
the amount of free space on the OS drive, the NTDS drive,
and the SYSVOL drive. The minimum amounts of space are
specified as variables at the beginning of this script.
##
The minimum amount of space to check for, specified in MB
$os_space = 2048 # Free space on OS Partition
$sysvol_space = 500 # Free space on SYSVOL Partition
$ntds_space = 400 # Free space on NTDS Partition for non-GCs
$ntds_space_gc = 600 # Free space on NTDS Partition for GCs
Import the Active Directory Module if it's not loaded
Import-Module ActiveDirectory
Enumerate each of the domains in the current forest
$objForest = Get-ADForest
$GCs = $objForest.GlobalCatalogs
$colDomains = $objForest.Domains
foreach ($strDomain in $colDomains)
{
 $domain = Get-ADDomain $strDomain
 $colDCs = $domain.ReplicaDirectoryServers
 # Enumerate each Domain Controller in the domain
 foreach ($dc in $colDCs)
 {
 Write-Host
 Write-Host “Checking Space on $($dc)”
 # Check the space in the NTDS Partition
 $obj_dc = Get-ADDomainController $dc
 $reg = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(
 “LocalMachine”, $dc)
 $key_ntds = $reg.OpenSubKey(“System\CurrentControlSet\”+
 “Services\NTDS\Parameters”)
 $ntds_dir = $key_ntds.GetValue(“DSA Working Directory”)
 $drive = $ntds_dir.Split(“\”)[0]
 $disk = Get-WmiObject -ComputerName $dc -Class ‘
 Win32_LogicalDisk -Filter “DeviceID = ‘$drive’”
 $mb_space = $disk.FreeSpace / 1024 / 1024

 # The NTDS space check depends on the whether or not the
 # DC is a GC
 if (!$obj_dc.IsGlobalCatalog -and ‘
 $mb_space -gt $ntds_space)
 { Write-Host “ NTDS Partition: OK” }
 if (!$obj_dc.IsGlobalCatalog -and ‘
 $mb_space -lt $ntds_space)
 { Write-Host “ NTDS Partition: Low” }
 if ($obj_dc.IsGlobalCatalog -and ‘
 $mb_space -gt $ntds_space_gc)
 { Write-Host “ NTDS Partition: OK” }
 if ($obj_dc.IsGlobalCatalog -and ‘
 $mb_space -lt $ntds_space_gc)
 { Write-Host “ NTDS Partition: Low” }

 # Check the free space in SYSVOL
 $key_sysvol = $reg.OpenSubKey(“System\CurrentControlSet\”+
 “Services\Netlogon\Parameters”)
 $sysvol_dir = $key_sysvol.GetValue(“SysVol”)
 $sysvol_drive = $sysvol_dir.Split(“\”)[0]
 $sysvol_disk = Get-WmiObject -ComputerName $dc -Class ‘
 Win32_LogicalDisk -Filter “DeviceID = ‘$sysvol_drive’”
 $sysvol_mb_space = $sysvol_disk.FreeSpace / 1024 / 1024
 if ($sysvol_mb_space -gt $sysvol_space)
 { Write-Host “ SYSVOL Partition: OK” }
 if ($sysvol_mb_space -lt $sysvol_space)
 { Write-Host “ SYSVOL Partition: Low” }
 # Check the free space in the OS Partition
 $key_os = $reg.OpenSubKey(“Software\Microsoft\”+
 “Windows NT\CurrentVersion”)
 $os_dir = $key_os.GetValue(“SystemRoot”)
 $os_drive = $os_dir.Split(“\”)[0]
 $os_disk = Get-WmiObject -ComputerName $dc -Class ‘
 Win32_LogicalDisk -Filter “DeviceID = ‘$os_drive’”
 $os_mb_space = $os_disk.FreeSpace / 1024 / 1024
 if ($os_mb_space -gt $os_space)
 { Write-Host “ OS Partition: OK” }
 if ($os_mb_space -lt $os_space)
 { Write-Host “ OS Partition: Low” }
 }
 Write-Host
}

Retrieving a List of Critical Events from a Domain
Controller's Event Logs
AD logs its critical events in the Windows event logs. These logs contain
informational events, warnings, and errors related to the operation of AD
and the DC itself. Therefore, it's important to monitor these logs and

regularly take action in order to maintain a healthy AD. Generally
speaking, the events that are most critical are the error events. Warning
events can indicate problems as well, but they may not require immediate
action.

You should monitor event logs every day. Some organizations use tools
such as the Microsoft Audit Collection Service or other third-party tools
to monitor and report on these event logs. In this section, we offer a
cheap and quick way to monitor for critical events on your DCs.

Event logs can be read natively in PowerShell using the Get-EventLog
cmdlet. This cmdlet can be used to connect to a local or remote computer
and grab either all or a subset of event logs from that system. The
following command demonstrates its use. Here you're connecting to
BAL-DC01 and retrieving a copy of all the error events in the eystem
event log:
Get-EventLog -ComputerName BAL-DC01 -LogName System
 -EntryType Error

To automate this a bit, you can build a script that queries each DC for
critical events and generates a report (see Listing 11.7). You can use the
techniques discussed in Chapter 1, “Using PowerShell with Active
Directory,” to run this script as a nightly scheduled task and have the
scheduled task email the report to the administrator. To ensure that you
deal only with recent events, you only look at the logs that were
generated within the past 24 hours.

Listing 11.7: report_events.ps1

File Name: report-events.ps1
Description:
Enumerates every DC in the forest and pulls error and
warning events from the System and Directory Service
event logs.
##
Imports the Active Directory Module if it's not loaded
Import-Module ActiveDirectory
Set the HTML file that you want to write the report to
$output_file = “c:\dc_log_report.html”
Defines the style of the HTML output

$style = “<style>BODY{background-color:lightgrey}” +
“TABLE{border-width: 1px;border-style: solid;” +
“border-color: black;border-collapse: collapse}” +
“TH{border-width: 1px;padding: 0px;border-style: “ +
“solid;border-color: black;background-color:#333; color: “ +
“white}TD{border-width: 1px;padding: 0px;border-style: solid;” +
“border-color: black;background-color:#EFF4FB}</style>”
Gets the current date minus 1 day for the search filter
$current_date = Get-Date
$past_days = New-Timespan -Days 1
$yesterday = $current_date.Subtract($past_days)
Enumerate each of the domains in the current forest
$objForest = Get-ADForest
foreach ($strDomain in $objForest.Domains)
{
 $domain = Get-ADDomain $strDomain
 # Enumerate each Domain Controller in the domain
 foreach ($dc in $domain.ReplicaDirectoryServers)
 {
 $system_warning = Get-EventLog -ComputerName $dc ‘
 -LogName System -After $yesterday | ‘
 where {$_.EntryType -eq “Warning”}
 $system_error = Get-EventLog -ComputerName $dc ‘
 -LogName System -After $yesterday | ‘
 where {$_.EntryType -eq “Error”}
 $ds_warning = Get-EventLog -ComputerName $dc -LogName ‘
 “Directory Service” -After $yesterday | ‘
 where {$_.EntryType -eq “Warning”}
 $ds_error = Get-EventLog -ComputerName $dc -LogName ‘
 “Directory Service” -After $yesterday | ‘
 where {$_.EntryType -eq “Error”}
 if ($system_error.Count -gt 0)
 {
 $formatted_obj = $system_error | Select-Object ‘
 EventID, Source, Message -Unique
 $html_out += “<H2>$dc System Errors</H2>” +
 ($formatted_obj | ConvertTo-HTML -Fragment)
 }
 if ($ds_error.Count -gt 0)
 {
 $formatted_obj = $ds_error | Select-Object ‘
 EventID, Source, Message -Unique
 $html_out += “<H2>$dc DS Errors</H2>” +
 ($formatted_obj | ConvertTo-HTML -Fragment)
 }

 if ($system_warning.Count -gt 0)
 {
 $formatted_obj = $system_warning | Select-Object ‘
 EventID, Source, Message -Unique
 $html_out += “<H2>$dc System Warnings</H2>” +
 ($formatted_obj | ConvertTo-HTML -Fragment)
 }
 if ($ds_warning.Count -gt 0)
 {

 $formatted_obj = $ds_warning | Select-Object ‘
 EventID, Source, Message -Unique
 $html_out += “<H2>$dc DS Warnings</H2>” +
 ($formatted_obj | ConvertTo-HTML -Fragment)
 }

 }
 Write-Host
}
Write the HTML file
ConvertTo-Html -PostContent $html_out -Head $style | ‘
 Out-File $output_file
Display the HTML report
Invoke-Expression $output_file

Reporting the Service Pack and Hotfix Status for
All Domain Controllers
In AD, it's important that the configuration of DCs is as similar as
possible. That way, you limit potential problems that may arise. If one
DC is running a different Service Pack level than another, then queries to
that specific DC may differ from the others. Therefore, it's a good idea to
ensure that you periodically check the Service Pack and hotfix status of
each DC.

You can view this information using the Get-ADDomainController cmdlet.
This cmdlet returns the following OS-specific information for the DC:

OperatingSystem

OperatingSystemHotfix

OperatingSystemServicePack

OperatingSystemVersion

You can run the following command against a single DC to get this
information. This command connects to the DC labeled BAL-DC01 and
returns all properties starting with the word Operating in a list:
Get-ADDomainController “BAL-DC01” | fl Operating*

Using this command in a script to collect this information on your DCs
is as simple as enumerating each DC and running the Get-ADDomainController
cmdlet against it. The script in Listing 11.8 gathers this OS information
from all the DCs in your forest.

Listing 11.8: get_os_info.ps1

File Name: get_os_info.ps1
Description:
Enumerates every Domain Controller in the forest and gets
information about the operating system version, service
pack, and hotfixes installed.
##
Imports the Active Directory Module if it isn't loaded
Import-Module ActiveDirectory
Enumerate each of the domains in the current forest
$objForest = Get-ADForest
foreach ($strDomain in $objForest.Domains)
{
 $domain = Get-ADDomain $strDomain
 # Enumerate each Domain Controller in the domain
 foreach ($dc in $domain.ReplicaDirectoryServers)
 {
 Get-ADDomainController $dc | ‘
 Select-Object Name, Operating*
 }
 Write-Host
}

Track Domain Controller Performance
In addition to ensuring that your DCs are healthy, you should also take
measures to make sure that they're performing well. There are multiple
performance counters on DCs that can help you determine how your DCs
are doing. Throughout this section, we'll walk you through the important
performance counters on which to measure your DCs. We'll provide
explanations as to what the performance metrics mean, and if possible,
we'll provide you with some recommended limits on these metrics.

Monitor Active Directory Performance
In the first part of this section, we'll focus on the performance of AD
itself. This means we'll look at AD as a network service and help you
understand some of its performance characteristics. In doing so, we'll
look at the following areas:

Measuring logon statistics for the various authentication protocols
supported by AD
Reviewing LDAP queries and determining if they need to be
optimized
Examining the performance of the AD database engine

Measuring Domain Logon Statistics
AD has the ability to authenticate people using a variety of authentication
protocols. Generally speaking, you'll likely see the following protocols
used for authentication against AD:

NTLM authentication
Kerberos authentication
LDAP bind authentication

NTLM Authentication
NTLM authentication is based on a challenge and response mechanism.
When a user authenticates with NTLM, a piece of data is encrypted using
the user's password and sent to a DC. The DC encrypts the data with the
copy of the user's password that it contains in the directory; if the two
match, then the password that the user entered must be correct. There are
some security vulnerabilities around the use of NTLM, and compared to
Kerberos, NTLM is considered the weaker protocol. Therefore, NTLM
isn't chosen by default in most authentication scenarios between
Microsoft clients and AD.

Note
AD uses a negotiation to determine which protocol should be used to
authenticate the user. By default, Kerberos is preferred during this
negotiation cycle. However, the client may not always choose Kerberos. If

Kerberos isn't used, then the fall-back protocol is NTLM. Therefore, if you
see a lot of NTLM authentication traffic on your DCs, that could indicate a
problem with Kerberos authentication.

You can measure NTLM authentication traffic using the NTLM
Authentications performance counter. This counter keeps track of the
number of NTLM authentications that occur per second. During a busy
load (such as the start of a workday), you can query for this counter to
determine how many times the DC is using NTLM instead of Kerberos.
You can use PowerShell to get a snapshot of the current number of
NTLM authentications per second. The following PowerShell commands
only provide you with a look at what is happening right now. If you want
a more accurate picture, you should measure NTLM authentications over
a period of time, such as one or two hours during peak load:
$ntlm = New-Object System.Diagnostics.PerformanceCounter(
 “Security System-Wide Statistics”, “NTLM Authentications”)
$ntlm.NextValue()

Kerberos Authentication
As mentioned earlier, Kerberos is the preferred authentication protocol
used in AD. A client will authenticate to the Kerberos KDC service on the
DC and obtain a ticket-granting ticket (TGT). This TGT is used for
requesting session tickets to services in the domain. Therefore, when
measuring Kerberos traffic, you may not want to measure just Kerberos
authentications, but also how many tickets are being requested. This
gives you an idea of how many people are authenticating and how often
resources are accessed.

To measure Kerberos authentication traffic, you use the Kerberos
Authentications counter in addition to the KDC AS Requests counter and
the KDC TGS Requests counter. The following PowerShell commands
present this information as a snapshot in time. In a manner similar to
NTLM authentications, you should measure this information over a
period of time in order for it to be accurate:

$kerb = New-Object System.Diagnostics.PerformanceCounter(
 “Security System-Wide Statistics”, “Kerberos Authentications”)
$kerb.NextValue()

$as_req = New-Object System.Diagnostics.PerformanceCounter(
 “Security System-Wide Statistics”, “KDC AS Requests”)
$as_req.NextValue()

$tgs_req = New-Object System.Diagnostics.PerformanceCounter(
 “Security System-Wide Statistics”, “KDC TGS Requests”)
$tgs_req.NextValue()

LDAP Bind Authentication
Lightweight Directory Access Protocol (LDAP) bind authentication is an
authentication type in AD that can't be used for network logon. Rather,
LDAP bind authentication is used only when you're connecting to a
directory with the LDAP protocol. If you have third-party applications
that use AD as an LDAP server, then you'll have LDAP binds occurring
on your DCs.

LDAP binds are inherently very insecure. When used over an open,
non-SSL protected channel, your credentials are sent to the LDAP server
in clear text for verification. The only way to protect your credentials in
this case is to use an SSL connection over which to pass LDAP
credentials. However, for AD, this requires that each DC have a
certificate installed, so it's often not used.

You can measure LDAP bind authentication statistics by using the
LDAP Successful Binds/sec counter. The following PowerShell
commands illustrate the use of this counter:
$ldap_bind = New-Object System.Diagnostics.PerformanceCounter(
 “NTDS”, “LDAP Successful Binds/sec”)
$ldap_bind.NextValue()

Measuring Active Directory Query Statistics
As an LDAP-compliant directory service, AD can service LDAP requests
from any source that is authorized to perform them. Because users can
read permissions to AD by default, any user can perform an LDAP query.

Queries that aren't optimized can greatly affect DC performance. If you
suspect that the performance of your DCs is suffering due to inefficient
queries, you can determine what queries are taking place and who is
executing them.

If you have an application that you think is a culprit, you can see
exactly what queries are being performed. To do this, you first need to
enable diagnostic logging on field engineering events. We discussed how
to do this earlier in this chapter in the section “Enabling Diagnostic
Logs.” In that section, we gave you a script that you can use to enable
diagnostic logging on DCs remotely. To enable the field engineering
events, enable logging for component number 15. If you set this log level
to 4, it will log inefficient and expensive queries every 12 hours when
garbage collection takes place. If you set the log level to 5, it will log
inefficient and expensive queries as they occur. We only recommend
enabling this log when you're looking into a specific situation; never
leave it enabled in the long term. Doing so will add several events into
your event logs and also negatively impact DC performance. The
following command uses the script earlier in this chapter to enable this
logging:
 set_ntds_log.ps1 -LogNumber 15 -LogLevel 4 -DCName “BAL-DC01”

After you enable the log, the next question you may have is, “What
kind of query is considered inefficient and expensive?” By default, an
expensive query is a query where more than 10,000 objects are visited
during the search operation. If your AD domain contains 50,000 users and
you perform a query to list those users, that query is considered
expensive because it touches more than 10,000 objects. That doesn't mean
the query is bad or wrong, it just means the DC has to do some work to
answer it. You shouldn't equate an “expensive” query with a “bad” query.
There are many legitimate cases where you'll need to search more than
10,000 objects.

If your idea of expensive is different than 10,000 objects, then the good
news is that you can modify this 10,000-object threshold. You can set a

Registry key on a per-DC basis to control what the DC considers
expensive. Modifying this Registry key doesn't increase the performance
of the DC; rather, it's only used to determine under which criteria it
should log a query as expensive. The key you can set to adjust this is at
HKLM\System\CurrentControlSet\Services\NTDS\Parameters\
 Expensive Search Threshold

Just set the Expensive Search Threshold value to a DWORD value that you
want to be considered expensive. The following command uses the New-
ItemProperty cmdlet to set this value to 5,000. As a side note, if you set this
value to 1, the DC will log every LDAP query that it performs:
New-ItemProperty HKLM:\System\CurrentControlSet\Services\NTDS\

 Parameters -Name “Expensive Search Threshold” -PropertyType
 DWORD -Value 5000

Now that you know what is considered expensive, the other question
you may have is what kind of query is considered inefficient. By default,
the DC considers any query that returns fewer than 1,000 of the objects it
touches to be inefficient. For example, if you search across 50,000 users
for every user in the Sales department, and only 200 users are returned in
the query, then that query is considered inefficient. Similar to how you
can modify what the DC considers expensive, you can also modify what
the DC considers inefficient. To do so, modify the following Registry
key:
HKLM\System\CurrentControlSet\Services\NTDS\Parameters\
 Inefficient Search Results Threshold

The following example sets this value to 5,000, which may be
appropriate for an environment with 50,000 users. The determination of
what should be considered inefficient is subjective, so this is something
you should define based on your experience and knowledge of your AD
environment.
New-ItemProperty HKLM:\System\CurrentControlSet\Services\NTDS\

 Parameters -Name “Inefficient Search Results Threshold”
 -PropertyType DWORD -Value 5000

Once these Registry values are set, logging will occur for as long as you

have the Field Engineering diagnostic value enabled. To help make
enabling and disabling these settings easier, you can use the script in
Listing 11.9. This script allows you to enable or disable LDAP query
logging on a specific DC. To use the script, specify either the Enable or
Disable parameter and the name of the DC in the DCName parameter. If you're
enabling LDAP query logging, then you can optionally specify the
Expensive and Inefficient keywords to adjust what the DC considers
expensive and inefficient. For example, the following command uses the
script to enable LDAP query logging on the DC BAL-DC01:
PS C:\> .\set_ldap_logging.ps1 -Enable -DCName BAL-DC01

BAL-DC01: LDAP Query Logging Enabled

Listing 11.9: set_ldap_logging.ps1

File Name: set_ldap_logging.ps1
Description:
Enables LDAP query logging on the specified DC
##
param([switch]$Enable, [switch]$Disable, [string]$Expensive=””,
 [string]$Inefficient=””, [string]$DCName=””)
if ($DCName -eq “”) { $DCName = “.” }
$reg = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(
 “LocalMachine”, $DCName)
if ($Disable)
{
 $key = $reg.OpenSubKey(“System\CurrentControlSet\”+
 “Services\NTDS\Diagnostics”, $true)
 $key.SetValue(“15 Field Engineering”, 0, “DWORD”)
 Write-Host “$($DCName): LDAP Query Logging Disabled”
}
else
{
 ## Enable the Field Engineering events
 $key = $reg.OpenSubKey(“System\CurrentControlSet\”+
 “Services\NTDS\Diagnostics”, $true)
 $key.SetValue(“15 Field Engineering”, 4, “DWORD”)
 ## Configure the values for Expensive and Inefficient
 $key = $reg.OpenSubKey(“System\CurrentControlSet\”+
 “Services\NTDS\Parameters”, $true)
 if ($Expensive -ne “”)
 {
 $key.SetValue(“Expensive Search Threshold”, $Expensive,
 “DWORD”)
 }
 if ($Inefficient -ne “”)
 {

 $key.SetValue(“Inefficient Search Results Threshold”,
 $Inefficient, “DWORD”)
 }
 Write-Host “$($DCName): LDAP Query Logging Enabled”
}

Measuring the Performance of the Active Directory
Database
The AD database (NTDS.DIT) is the file the DC uses to store all the
configuration and domain data for AD. This database uses the ESE, which
is based on Microsoft's Joint Engine Technology. The database engine
uses a series of transaction logs in a lazy-commit fashion to write data to
the database. This means that when data needs to be written to the
database, it isn't written directly to the NTDS.DIT file. Instead, it's first
written to a log file on disk and simultaneously held in memory. When
this data is queried, the results are returned from memory first. The data
is also streamed to disk so that if the DC crashes before it has time to
update the NTDS.DIT file, the log file can be used to write that data to the
database. The log file is written to sequentially in a very fast manner as
data comes in. The database file, on the other hand, is written to
randomly as data is placed in specific places in the database. The lazy-
commit system means data is not written to the database immediately.
Rather, the DC commits the data to the database when it has some free
cycles to do so.

The ESE database system employed by AD can be rather complex. It's
important to monitor the performance of this database to ensure that the
DC functions properly and that it can store the data it needs to. You
should pay attention to the following five database performance counters
included with the DC:

Database Cache % Hit This is the percentage of page requests for
the database file that were filled by the cache rather than a file
operation of the database. The higher this number, the better.
Database Page Fault Stalls/sec This is the number of page faults per

second that can't be serviced due to the limited memory.
Database Page Evictions/sec This counter describes the memory
pressure on the database cache. When this counter is high, the DC
needs more memory.
Database Cache Size This counter contains the current amount of
memory that the directory service is using to cache the database.
Ideally, this number should be as high as possible. This would
indicate that database operations are mostly occurring out of memory
instead of having to be paged from the disk.
Log Threads Waiting This contains the number of threads that are
waiting for data to be written to a transaction log file. Transaction
commits to the database can't occur until they're first written to the
transaction log. If this number is high, then data isn't being streamed
to the log file fast enough, and you probably need a faster hard drive
or a different RAID configuration on the DC.

The following PowerShell commands use the counters discussed to
display information about the DC's database performance. Ideally, you
should examine these counters over a period of time in order to get an
accurate picture. These commands provide only a snapshot of the current
state:
$db_cache_pct = New-Object System.Diagnostics.PerformanceCounter
 (“Database”, “Database Cache % Hit”, “lsass”)
$db_cache_pct.NextValue()

$db_pf_stalls = New-Object System.Diagnostics.PerformanceCounter
 (“Database”, “Database Page Fault Stalls/sec”, “lsass”)
$db_pf_stalls.NextValue()

$db_pg_evicts = New-Object System.Diagnostics.PerformanceCounter
 (“Database”, “Database Page Evictions/sec”, “lsass”)
$db_pg_evicts.NextValue()

$db_cache_sz = New-Object System.Diagnostics.PerformanceCounter
 (“Database”, “Database Cache Size”, “lsass”)
$db_cache_sz.NextValue()

$log_threads = New-Object System.Diagnostics.PerformanceCounter
 (“Database”, “Log Threads Waiting”, “lsass”)
$log_threads.NextValue()

Monitor Domain Controller Hardware
In this part of this section, we'll look at various aspects of DC hardware.
The performance of DCs depends heavily on the processors, memory,
hard disks, and network adapters used by the server. Therefore, we'll look
across these various components so you'll understand what to watch out
for in each one. In doing so, we'll teach you how to use PowerShell to
gather some of the data associated with the performance of this hardware,
so you can automate DC hardware reporting and stay on top of your DC's
performance.

Generating a Report of CPU Utilization
The CPU in a DC is only one of the components that must be monitored
to ensure that the DC isn't overburdened. CPUs execute one or more
threads inside a process. While threads are being executed, the processor
is being used. Therefore, the first measure of CPU utilization that we'll
look at is % Processor Time. This indicates what percentage of time the
processor spends executing threads in the active processes. You really
should look at this metric over a period of time, perhaps monitoring it
every second for an hour or two during the day when the DCs are used
heavily. When examining your processor utilization over a period of
time, you should rarely see % Processor Time exceed 80 to 85%. There
will be occasional spikes, but they should be the exception rather than the
norm. If you regularly see your processor sitting above 85% utilization,
it's time to add additional processors or additional DCs to scale out the
load. This might also be a good time to turn on LDAP query logging to
help determine why your processor utilization is so high.

You can use PowerShell to give you a snapshot of the current value of
the % Processor Time metric. To do so, use the following PowerShell
commands:
PS C:\> $pct_proc_time = New-Object System.Diagnostics.
 PerformanceCounter(“Processor”, “% Processor Time”, “_Total”)
PS C:\> $pct_proc_time.NextValue()

2.582036

The second CPU metric to keep an eye on is Interrupts/sec Counter. It
measures the number of hardware interrupts that are being received from
the DC's I/O devices. A DC in normal operation could be processing
thousands of interrupts per second. To understand what is healthy for
your environment, you should establish a baseline number by monitoring
your DCs when they're healthy for a period of time and then comparing
the ongoing monitoring results to the baseline. If there is a sudden spike
in interrupt requests, it could mean that a bad piece of hardware in the DC
is throwing excessive interrupts. The following PowerShell commands
display a snapshot of the current number of interrupts per second.
Remember that this is only a point-in-time snapshot, so you should use it
in a script to monitor the DC over a period of time to get an accurate
assessment:
PS C:\> $interrupts = New-Object System.Diagnostics.
 PerformanceCounter(“Processor”, “Interrupts/sec”, “_Total”)
PS C:\> $interrupts.NextValue()
129.0122

The final metric of a DC's CPU utilization is the processor queue
length. The processor-run queue holds the threads that are waiting to be
executed. When the queue length is high, that means the processor can't
keep up and isn't processing the threads quickly enough. When this
happens, the processor becomes the bottleneck. Ideally, this queue length
should be zero, but it's normal for it to have one or two threads waiting.
We recommend ensuring that the queue length doesn't exceed two threads
waiting for execution per processor. So if you have two processors, the
processor queue length should be less than 4. As with the other counters,
you should monitor this over time, but the following PowerShell
commands give you a snapshot of your current processor queue length:
PS C:\> $cpu_queue = New-Object System.Diagnostics.
 PerformanceCounter(“System”, “Processor Queue Length”)
PS C:\> $cpu_queue.NextValue()
2

Generating a Report of Memory Usage
Memory usage in Windows is a tough topic to comprehend, partly
because the terminology used has changed over the years. Therefore, it's
important to first give you a quick understanding of how memory works
in Windows; this will help you understand how a DC uses memory and
how much it should have.

The first thing to point out is that there is a distinct difference between
virtual memory and physical memory. When a process uses memory, it
doesn't address physical memory directly. Instead, it addresses virtual
memory, which acts as a layer of obfuscation on top of physical memory.
The address space of physical memory is completely different from the
address space of virtual memory. For example, if a process allocates 1
page of memory at address 28, that page may physically reside at address
96 in physical memory.

The size of the virtual address space varies depending on the version of
Windows that is in use. For example, the virtual address space is different
in 32-bit Windows, 64-bit Windows, and Itanium. The connection
between physical and virtual address spaces is very weak. In fact, the
address space that a process can use is sometimes larger than the amount
of physical memory in the system. This ensures that the process can
address its own memory in any way it sees fit without impacting other
processes. With this architecture, process 1 using a memory page at
address 28 doesn't impact process 2 using a memory page at address 28.
This is because address 28 in process 1 may map to address 54 in
physical memory, and address 28 in process 2 may map to address 103 in
physical memory.

In 32-bit Windows, 4 GB of memory is addressable. By default, this is
split down the middle for applications (user-mode memory) and for the
OS (kernel-mode memory). Each gets 2 GB of addressable memory,
unless a specific startup switch is used that allows applications to use
more than 2 GB. In 64-bit Windows, however, there is a theoretical limit

of 16 EB (that's exabytes) of addressable memory. In reality, though,
Windows will allow you to address up to 16 TB. This 16 TB address
space is also split in half (8 TB for applications and 8 TB for the OS). So
even if only 8 GB of memory is installed on the computer, applications
can address up to 8 TB.

To allow applications to use the same address space, Windows uses
context switches, which swap out the address space between different
processes. For example, if the processor is executing a thread in the
notepad.exe process, it first ensures that it's using Notepad's address space.
If you switch over to Microsoft Word, the processor will swap out the
active address space with Word's address space. This doesn't mean
memory pages are moved around; it just means the memory map is
adjusted. The kernel, on the other hand, always occupies the same address
space and isn't swapped out like applications.

Now that you understand how memory works in Windows at a high
level, let's look at some common terminology. We can separate the
common memory terms into two buckets: terms that pertain to virtual
memory and terms that pertain to physical memory. Table 11.6 describes
the common terms for virtual memory.

Table 11.6 Common Terminology for Virtual Memory
Term Description

Reserved
Memory that has been allocated for use by a process when it asks for a contiguous block of addresses in its
address space. This memory isn't backed by physical memory (in RAM or on disk), so nothing can be stored at
these addresses yet.

Committed
Memory that has been allocated by a process and is backed by physical memory in RAM or on disk. This
memory can be used because when something is written to it, the data can be stored in RAM, a memory mapped
file, or a paging file.

Free Memory in the address space that is currently not being used.

System
commit limit

The total amount of memory that can be committed by the system. Calculated by adding together the amount of
physical RAM in the system plus the sizes of the paging files.

Current
system
commit
charge

The total amount of memory that is currently committed for use.

Table 11.7 describes the common memory terms for discussing
physical memory.

Table 11.7 Common Terminology for Physical Memory
Term Description

Zeroed
pages

Memory pages that have been zeroed out (previous data in this page has been written over with all zeroes). When a
page is zeroed out, it's ready to be reused.

Free
pages

Memory pages that aren't being used but haven't yet been zeroed out. Before they can be used, they must first be
zeroed out.

Modified
pages

Memory pages that haven't been used in a while. Before the space can be reused for another process, the existing data
first needs to be written to disk.

Standby
pages

Memory pages that haven't been used in a while but have already been written to disk. If the process that was using
the memory pages needs them back, it can reuse them. Otherwise, these memory pages can be freed, zeroed out, and
reused if they're needed.

Working
set Amount of committed memory being used by a process that is currently physically in RAM.

Active Amount of memory that is currently used in process working sets.

When examining memory usage on a DC, there are a few main areas
that you should look at:

The amount of available memory
The frequency at which page faults are occurring
How heavily the paging files are used
Local Security Authority Subsystem Service (LSASS) memory
usage

The amount of available memory can be determined by using the
Available MBytes counter. This value is a combination of memory from
the free list, the zeroed list, and the standby list. According to Table 11.7,
these pages are available for reuse, although they may need to be zeroed
out first. The following PowerShell commands grab a snapshot of the
current amount of available memory:
PS C:\> $mem_avail = New-Object System.Diagnostics.
 PerformanceCounter(“Memory”, “Available MBytes”)
PS C:\> $mem_avail.NextValue()
398

There are two types of page faults in Windows: hard page faults and
soft page faults. A soft page fault occurs when the memory page is still in
physical memory but is in the working set of the process. A hard page
fault occurs when a process requests a memory page that is no longer
kept in physical memory. In this case, the page was previously moved to
a paging file on the hard disk and must first be retrieved back into

physical memory before it can be used. Page faults are a normal
occurrence, so don't be alarmed to see them happening. Memory is
regularly paged out even if there is plenty available. The Virtual Memory
Manager in Windows performs this process continuously as a measure of
efficiency. You can use the Page Faults/sec counter to determine how
frequently page faults are occurring in your DC:
PS C:\> $page_faults = New-Object System.Diagnostics.
 PerformanceCounter(“Memory”, “Page Faults/sec”)
PS C:\> $page_faults.NextValue()
66.9549

Ultimately, the thing that will probably slow down memory usage the
most is excessive reading from the paging file. Windows tries not to
make a regular habit of writing frequently used memory pages to the
paging file. Therefore, if data is being paged out to disk excessively,
that's a really good indication that your DC needs more memory. There
are two counters to look out for when examining the paging file:

% Usage—Shows the current usage of the paging file
% Usage Peak—Shows the peak usage of the paging file

The following commands demonstrate how to query the %Usage and
the %Usage Peak counters:
PS C:\> $pf_usage = New-Object System.Diagnostics.
 PerformanceCounter(“Paging File”, “% Usage”)
PS C:\> $pf_usage.NextValue()
9.453583

PS C:\> $pf_usage_peak = New-Object System.Diagnostics.
 PerformanceCounter(“Paging File”, “% Usage Peak”)
PS C:\> $pf_usage_peak.NextValue()
9.453583

When you're monitoring DCs, there is one process that it's very
important for you to keep an eye on: the LSASS process. LSASS is the
process in which the Local Security Authority operates, and it's the
process from which AD is primarily serviced. With regard to memory,
the LSASS process has a variable memory usage model. The idea is that
LSASS should consume a baseline amount of memory; if any additional
memory is left, it can be used for caching AD data in order to service

requests more quickly. Looking at the LSASS process as a whole, you'll
notice that it grows over time as it caches more and more information.
However, the private (nonshared) memory for LSASS won't grow
significantly over time. Therefore, you should monitor private bytes to
detect an LSASS memory leak:
PS C:\> $lsass_priv = New-Object System.Diagnostics.
 PerformanceCounter(“Process”, “Private Bytes”, “lsass”)
PS C:\> $lsass_priv.NextValue()
3.601613E+07

Generating a Network Bandwidth Report
Over the years, as networking hardware has steadily improved, network
bandwidth has become less of a problem. However, it's still important to
monitor the bandwidth used by your DC, for a few reasons. First, you
could have a malfunctioning network card, and a lack of data sent or
received could indicate to you that there are problems. Second, you could
be receiving excessive amounts of data, which could mean that you're
experiencing unusually heavy traffic or are in the midst of a Denial of
Service attack. Also, there is always the possibility of a misconfiguration
of the network settings, which could also be causing problems. If you
have multiple network adapters in the DC, then you may not even notice
that one of them is misbehaving.

To monitor network bandwidth, look at two primary performance
counters:

Bytes Sent/sec
Bytes Received/sec

You can use these counters to determine whether there is an unusually
heavy or light network load on your DCs. The amount of network traffic
that your DC sends and receives is subjective. Therefore, you should take
a baseline of a healthy DC over a period of time (a couple of days or
possibly a week or more). The longer the period over which you can take
a baseline, the more accurate the picture of your bandwidth usage will be.
The following PowerShell commands provide a snapshot of current

network utilization:
PS C:\> $bytes_in = New-Object System.Diagnostics.

 PerformanceCounter(“Network Interface”, “Bytes Received/sec”,
 “Local Area Connection”)
PS C:\> $bytes_in.NextValue()
864.7373

PS C:\> $bytes_out = New-Object System.Diagnostics.

 PerformanceCounter(“Network Interface”, “Bytes Sent/sec”,
 “Local Area Connection”)
PS C:\> $bytes_out.NextValue()
1173.977

Generating a Hard-Disk Report
The hard disk is often the slowest component in a DC. Because of the way
memory is used (as discussed earlier in this chapter in the section
“Generating a Report of Memory Usage”), the hard disk serves as a
temporary backup for storing memory pages that aren't used very often. If
memory pages that are frequently used are cached to disk, then that
indicates that the DC needs more memory.

The performance of the hard disks in the DC is of great importance to
the performance of AD. To monitor the performance of the disks, you
need to keep an eye on the disk usage and the disk response time. You can
measure the amount of disk time with the % Disk Time counter. As a
general rule of thumb, we recommend that you only host AD on DCs and
don't install additional applications for hosting. If your DC only services
AD, then the % Disk Time counter should not exceed 70%. However, if
you're hosting other services on your DC, such as a SQL server, then you
can expect % Disk Time to be higher. If it's above 90%, you should
consider reconfiguring your disks into a different RAID configuration.
The following PowerShell commands grab a point-in-time look at % Disk
Time on the DC:
PS C:\> $disk_time = New-Object System.Diagnostics.
 PerformanceCounter(“PhysicalDisk”, “% Disk Time”, “_Total”)
PS C:\> $disk_time.NextValue()
0.466341

Another set of counters that is important to look at for hard-disk health
are Disks Reads/sec and Disk Writes/sec. These counters track how much
data is being read from and written to the disk in one second. Note that
DCs generally read more than they write. Therefore, it's not uncommon to
notice that your read operations are more intensive than your write
operations. The following PowerShell commands illustrate how to gather
disk read and write data:
PS C:\> $disk_read = New-Object System.Diagnostics.
 PerformanceCounter(“PhysicalDisk”, “Disk Reads/sec”, “_Total”)
PS C:\> $disk_read.NextValue()
0

PS C:\> $disk_write = New-Object System.Diagnostics.

 PerformanceCounter(“PhysicalDisk”, “Disk Writes/sec”,
 “_Total”)
PS C:\> $disk_write.NextValue()
0

You should also measure the length of the disk queue. This indicates
how many requested operations are outstanding on the disk. If this
number builds up, that's an indication that your disk can't keep up with
demand. Generally speaking, you want no more than two operations in
the queue for each disk that you have installed. So if you're running two
drives in a RAID configuration, the disk queue length should be four or
less. You can use the following PowerShell commands to get a snapshot
of the disk queue length:
PS C:\> $disk_queue = New-Object System.Diagnostics.

 PerformanceCounter(“PhysicalDisk”,
 “Current Disk Queue Length”, “_Total”)
PS C:\> $disk_queue.NextValue()

The final aspect of disk health that you want to keep an eye on is the
amount of free disk space available on the DC. We discussed this topic in
detail earlier in this chapter in the section “Viewing the Available Disk
Space across All Domain Controllers.” We recommend that you go back
and read that section if you haven't already done so.

Index

A
A (host) records
abstract classes
access control entries (ACEs)

Authenticated Users
inheritance
permissions
self-write
TPM information

Access Control Lists (ACLs)
copying
DNS zones
restores
setting
SIDs in
viewing

-AccountInactive switch
AccountName component in SPNs
accounts

computer. See computer accounts
service
user. See user accounts

ACEs. See access control entries (ACEs)
ACLs. See Access Control Lists (ACLs)
-Action parameter
actions for scripts

Actions tab
activated TPM status
Active Directory (AD) drive
Active Directory Certificate Services (AD CS) database
Active Directory Domain Services
Active Directory Domains & Trusts user interface
Active Directory Lightweight Directory Services (AD LDS)
Active Directory Management Gateway (ADMG)

installing
requirements

Active Directory Migration Tool (ADMT)
Active Directory module

AD drive
administration
DCs

configuring
moving

description
loading
object attributes
preferred bridgehead servers
site-link bridging
UGC enabling

Active Directory Services Interface (ADSI)
moving DCs
objects

attributes
creating
deleting
moving

Active Directory Services Interface (ADSI) (continued)
properties
retrieving

overview
preferred bridgehead servers
time synchronization
UGC enabling

Active Directory Users and Computers (ADUC)
account lockouts
database viewing
deletion prevention
moving objects
password resets
RODCs

Active Directory Web Services (ADWS) component
installing
requirements

active memory pages
AD (Active Directory) drive
AD CS (Active Directory Certificate Services) database
AD-integrated zones

converting to
creating

AD LDS (Active Directory Lightweight Directory Services)
AD module. See Active Directory module
Add-ADComputerServiceAccount cmdlet
Add-ADFineGrainedPasswordPolicy cmdlet
Add-ADGroupMember cmdlet
Add Or Remove Snap-ins dialog
Add-PSSnapIn cmdlet

add_site_to_sitelink function
Add-WBBackupTarget cmdlet
Add-WBBareMetalPolicy cmdlet
Add-WBBareMetalRecovery cmdlet
Add-WBFileSpec cmdlet
Add-WBSystemState cmdlet
Add-WBVolume cmdlet
Add-WindowsFeature cmdlet
adding

group members
sites to site links

AddSiteToSiteLink-ADSI.ps1 script
ADMG (Active Directory Management Gateway)

installing
requirements

AdminEmail parameter
administrator mode
administrators for OUs
ADMT (Active Directory Migration Tool)
adprep.exe tool
adrestore.exe tool
ADS_PROPERTY_CLEAR flag
ADSI. See Active Directory Services Interface (ADSI)
ADUC. See Active Directory Users and Computers (ADUC)
ADWS (Active Directory Web Services) component

installing
requirements

alias records
aliases for cmdlets
Allow - Write Members permission

AllowDivergentReplication.ps1 script
AllSigned setting
alternative domain names
AND operators for Global Catalogs
AS Requests in KDCs
Associate A File Type Or Protocol With A Program option
associating subnets
asterisks (*) for wildcard routing
Asynchronous Transfer Mode (ATM) backbones
at signs (@) for UPN suffixes
attributes

bitwise
clearing
defining

Attributes tab
Authenticated Users group
authentication

Kerberos. See Kerberos authentication
LDAP bind
NTLM
selective

authoritative time sources
authorization lockout
automatic operations

backups
scripts
site coverage
site-link bridging, disabling

automatic replication frequency
auxiliary classes

availability in DNS
Available MBytes counter

B
BackgroundColor property
Backup-ADDS.ps1 script
Backup-AllGPOs.ps1 script
Backup-DomainController.ps1 script
Backup-GPO cmdlet
BackupRecoveryInformationToActiveDirectory method
backups

automating
BitLocker recovery passwords
database

cmdlets
one-time
snapshot

DC certificates
GPOs
non-Active Directory data
plans
promoting DCs from
Recycle Bin
restoring. See restores
SYSVOL
volumes for

bandwidth
network
in site link costs

bare-metal recovery (BMR) option

BASL-ADModule.ps1 script
BASL-ADSI.ps1 script
bcdedit command
bind authentication
BIOS-level screen
BitLocker

automating configuration
command-line interface
enabled status
recovery passwords

deleting
reading
storing

settings
TPM

information recovery
information storage
ownership
status

turning on
bitwise attributes
bitwise operators

Global Catalogs
UGCs

blank passwords
block comments
boot file backups
-bor operator
bridgehead servers

listing

settings
bridges, site-link
broadcasts, network
-bxor operator
Bypass setting
Bytes Received/sec counter
Bytes Sent/sec counter

C
caches

passwords
universal groups

calling functions
capitalization in cmdlets
case sensitivity of cmdlets
cd command
certificate authorities (CAs)
certificates

backups
restores
self-signed
for signatures

ChangeZoneType method
check_dc_services.ps1 script
check_drive_space.ps1 script
check_services function
CheckDCTimeSync.ps1 script
CheckDCTimeSync-ADSI.ps1 script
child domains
Choose how BitLocker-protected operating system drives can be

recovered policy
classes in WMI
Classless Inter-Domain Routing (CIDR) notation
cleaning up

domain controllers
SIDHistory

-Clear parameter
clearing

attributes
bits

clients
DNS
Kerberos

clock skew
clocks. See time
cmdlets

aliases
backup
help
listing
output formatting
parameters
pipelining
structure
testing
WMI

CNAME records
GlobalNames zones
registering

$cnfg variable

COM+ Event System service
comma-separated values (CSV) files

objects
for user accounts

command-line interface for BitLocker
command pane
commands history
commas (,) for parameters
comments
CommitChanges method
committed memory
common parameters
Compare-Object cmdlet
comparing group members
comparison operators
compatdc.inf security template
compatws.inf security template
-ComplexityEnabled parameter
compromised RODC passwords
computer accounts

cmdlet overview
default location
deleting
finding
join limitations
offline domain joins
pre-creating
properties
removing
staging

Computer Configuration node
Computers container
computers for BitLocker recovery information
conditional forwarders
conditionals in scripts
ConfigDNSForwarders.ps1 script
Configuration naming contexts
-Confirm parameter
/ConfirmGC switch
conflict resolution in FGPP
connection objects
consistency in replication
console properties
containers, well-known
-contains operator
-Context parameter
context switches
converting to AD-integrated zones
ConvertTo-SecureString method
ConvertToOwnerAuth method
Copy-GPO cmdlet
-CopyACL parameter
copying

GPOs
group members

corrupt replication partners
cost attribute
costs of site links
CPU utilization
Create method

objects
sites

create_site function
CreateSite-ADModule.ps
CreateSite-ADSI.ps

create_sitelink function
create_subnet function

CreateSubnet-ADModule.ps
CreateSubnet-ADSI.ps

Create Task dialog
CreateInstanceFromTextRepresentation method
CreateLogLevel function
CreateSite-ADModule.ps1 script
CreateSite-ADSI.ps1 script
CreateSiteLink-ADSI.ps1 script
CreateSRConsistencyObject.ps1 script
CreateSubnet-ADModule.ps1 script
CreateSubnet-ADSI.ps1 script
CreateZone method
creation date of objects
critical events, listing
cross-forest trusts–
CSV (comma-separated values) files

objects
for user accounts

curly brackets ({}) in loops
current system memory commit

D
DACLs (Discretionary Access Control Lists)

Database Cache % Hit counter
Database Cache Size counter
Database Page Evictions/sec counter
Database Page Fault Stalls/sec counter
databases

backups
cmdlets
one-time
snapshot

defragmenting
moving
performance
SYSVOL
whitespace

DateTime function
DC Locator process
DC security.inf template
DCDIAG tool
dcpromo.exe tool

DCs
cleaning up
removing

domains
decommissioning
new

Global Catalogs
parameters
server promotion

to RODCs
to writeable domain controllers

DCs. See domain controllers (DCs)
debug log
-Debug parameter
declaring parameters
decommissioning domains
Default Programs applet
defaults

locations
computer accounts
user accounts

SYSVOL permissions
tombstone lifetimes

defining functions
defragmenting database
delegating permissions
Delegation of Control Wizard
Delete method
-delete switch
DeleteLogLevel function
DeleteTree method
deletion and removal

BitLocker recovery passwords
computer accounts
DCs
distribution groups
Global Catalogs
GPOs
group members
objects
OUs

preventing
groups
OUs
user accounts

security groups
sites
subnets
time settings
trusts
user accounts

/DemoteFSMO switch
Denial of Service (DoS) attacks
-Description parameter
“Designing OU Structures that Work”
destination DCs in replication
-Detailed parameter
DFS Replication service
dfsrmig.exe command
diagnostic logs
difference sets
digital signatures
dir command
dir cert command
Directory Services Event Viewer
Directory Services Restore Mode (DSRM)

defragmentation
passwords
system-state restores

$DirectoryListing variable
Disable-ADAccount cmdlet

disable_ntds_logging.ps1 script
Disable parameter in Registry
-disable switch
disabled user accounts
DisableTimeDebugLog function
disabling

automatic site coverage
automatic site-link bridging
Kerberos logging
SID History
UGC
user accounts

Discretionary Access Control Lists (DACLs)
Disk Reads/sec counter
disk space
% Disk Time counter
Disk Writes/sec counter
DisplayMessage function
DisplayMessage_Param function
DisplayMessage_Paren function
-DisplayName parameter
distinguished names (DNs)

functional levels
moving objects
retrieving

distribution groups
divergent replication partners
djoin.exe tool
DNs (distinguished names)

functional levels

moving objects
retrieving

DNS. See Domain Name System (DNS)
DNS Client service
DNSCMD.EXE command
Do loops
dollar signs ($) for variables
domain controllers (DCs)

Active Directory installation on
promoting DCs from backups
promoting servers to RODCs–
promoting servers to writeable domain controllers
removing DCs

Active Directory module
domain controllers (DCs) (continued)

certificates
backups
restores

cleaning up
configuration
database
as DNS servers
FSMO roles. See Flexible Single Master of Operation (FSMO) roles
Global Catalogs

installing
removing
settings

health
critical events from logs
disk space

required services
Service Pack and hotfix status

names
performance. See performance
recovery mode
replication
site determination

Domain Name System (DNS)
forwarders
high availability
lab scenarios
name suffixes
records

priority
registering
weight

recursion
restarting
servers

configuration
statistics

unpublished domain names
zones

AD-integrated
creating
GlobalNames
reverse lookup
servers for

domain-naming contexts
Domain Naming Master FSMOs

Domain NetBIOS names
domain-wide password resets
domainFunctionality property
domains

creating
dcpromo.exe for
decommissioning
functional levels

changing
retrieving

linking GPOs to
local groups
logon statistics
offline joins
overview–
time management. See time
tombstone lifetimes
trees
trusted and trusting
trusts. See trusts
unpublished names
upgrading
UPN suffixes

DoS (Denial of Service) attacks
dots (.) in object references
dsacls.exe utility

ACLs
deletion prevention
group deletions

dsadd.exe utility

dsamain.exe utility
dsmod.exe utility
DSRM (Directory Services Restore Mode)

defragmentation
passwords
system-state restores

dumping
groups to files
objects to CSV files

duplicate SPNs

E
Edit Action dialog
EFS (Encrypting File System)
EK (endorsement key) pairs
Eliminated SYSVOL state
email for expiring passwords
Enable-ADAccount cmdlet
Enable-ADOptionalFeature cmdlet
enabled TPM status
EnableGNZ.ps1 script
EnableTimeDebugLog function
EnableUGC-ADModule.ps1 script
EnableUGC-ADSI.ps1 script
enabling

debug log
diagnostic logs
GlobalNames zones
Recycle Bin
UGC

user accounts
Encrypt method
encrypting

tickets
volumes

Encrypting File System (EFS)
endorsement key (EK) pairs
Enforce setting for GPOs–
-Enforced parameter
enumerating object properties
-eq operator
$Error variable
-ErrorAction parameter
errors

diagnostic logs
Kerberos logs–

-ErrorVariable parameter
Esc key
ESE (Extensible Storage Engine) format

database based on
disk space
performance

event logs for Kerberos–
events, critical
-Examples parameter
executing cmdlets–
execution policy settings
expensive queries
expiration

passwords

user accounts
explicit trusts
Export cmdlet
Export-CliXML cmdlet
Export-CSV cmdlet
Export-PSSession cmdlet
exporting

group members
objects

Extensible Storage Engine (ESE) format
database based on
disk space
performance

external trusts

F
F7 key
F9 key
$false variable
FGPP (Fine-Grained Password Policy) feature

blank passwords
defined
priority and conflict resolution

File Replication System (FRS)
restores
SYSVOL

files
dumping groups to
exporting objects to
zone

-Filter parameter
filters

GPOs–
object searches
SID

FindDupSPNs function
finding

computer accounts
duplicate SPNs
objects

Fine-Grained Password Policy (FGPP) feature
blank passwords
defined
priority and conflict resolution

Flexible Single Master of Operation (FSMO) roles
backup plans
holders
overview
seizing
in time
transferring–

forcing
DC replication
password changes
service records registration

ForEach-Object cmdlet
in loops
site listings

ForegroundColor property
forest root domains

forestFunctionality property
forests

functional levels
changing
retrieving

multidomain–
sites in

listing
removing

time source
trusts–

Format-Custom cmdlet
Format-List cmdlet
Format-Table cmdlet
Format-Wide cmdlet
formatting output
forward lookup zones
forward queries
FQDNs (fully qualified domain names)
free memory
frequency of automatic replication
FRS (File Replication System)

restores
SYSVOL

FSMO. See Flexible Single Master of Operation (FSMO) roles
-Full parameter
Full Volume Encryption (FVE)
fully qualified domain names (FQDNs)
functional levels in domains and forests

changing

retrieving
functions in scripts
FVE (Full Volume Encryption)

G
Garbage Collection logging level
GC. See Global Catalogs
-ge operator
General tab

objects
scripts

Get-Acl cmdlet
Get-ADComputer cmdlet

computer account passwords
description
domain clients
RODCs

Get-ADDefaultDomainPasswordPolicy cmdlet
Get-ADDomain cmdlet
Get-ADDomainController cmdlet

FSMO roles
Global Catalogs
RODCs
Service Pack and hotfix status
sites

Get-ADForest cmdlet
FSMO roles
functional roles
Global Catalogs

Get-ADGroup cmdlet

Get-ADGroupMember cmdlet
Get-ADObject cmdlet

attributes
BitLocker recovery passwords
bridgehead servers
description
DNs
filters
object creation date
properties
restores
sites
subnets
tombstone lifetime
TPM passwords
trusts
UGCs

Get-ADOptionalFeature cmdlet
Get-ADOrganizationalUnit cmdlet
Get-ADPrincipalGroupMembership cmdlet
Get-ADRootDSE cmdlet
Get-ADUser cmdlet

last logons
multiple users
passwords
restores
SIDHistory
user information

Get-ADUserResultantPasswordPolicy cmdlet
Get-ChildItem cmdlet

aliases for
certificates

Get-command cmdlet
Get-Content cmdlet
Get-Date cmdlet
get_dcpath function
Get-EventLog cmdlet
Get-ExecutionPolicy cmdlet
Get-GPO cmdlet
Get-GPOReport cmdlet
Get-GPResultantSetOfPolicy cmdlet
Get-Help cmdlet
Get-Host cmdlet
Get-ItemProperty cmdlet
Get-Member cmdlet
get_ntds_log_settings.ps1 script
get_os_info.ps1 script
Get-Process cmdlet

in loops
overview
parameters for
pipelining

Get-Service cmdlet
get_sitedn function

AddSiteToSiteLink-ADSI.ps
CreateSiteLink-ADSI.ps

get_sitelinkdn function
Get-StarterGPO cmdlet
Get-WBBackupSet cmdlet
Get-WBBackupTarget cmdlet

Get-WBBareMetalRecovery cmdlet
Get-WBDisk cmdlet
Get-WBFileSpec cmdlet
Get-WBJob cmdlet
Get-WBPolicy cmdlet
Get-WBSchedule cmdlet
Get-WBSummary cmdlet
Get-WBSystemState cmdlet
Get-WBVolume cmdlet
Get-WBVssBackupOptions cmdlet
Get-WMIObject cmdlet

BitLocker
classes
recovery passwords
status

disk space
DNS servers
operating system version
TPM

GetConversionStatus method
GetDuplicateSPNs.ps1 script
GetKeyProtectors method
GetKeyProtectorType method
GetNumericalPassword method
GetPartners-ADSI.ps1 script
GetPhysicalPresenceTransition method
GetRecentObjects.ps1 script
GetSitesWithoutGCs-ADModule.ps1 script
GetSitesWithoutGCs-ADSI.ps1 script
Global Catalogs

disk space
FSMO roles–
installing
lists
removing
servers
settings

global groups
globally unique identifiers (GUIDs)

computer accounts
FGPP
host records

GlobalNames zone (GNZ)
GPMC (Group Policy Management Console)

BitLocker recovery passwords
TPM information storage
viewing

GPOs. See Group Policy Objects (GPOs)
GPPs (Group Policy Preferences)
group accounts

distribution
dumping to files
information
listing
management designations
members

adding and removing
comparing
copying
determining

exporting
privileged
viewing

moving
preventing deletion
scope and type
security

Group Policy Management Console (GPMC)
BitLocker recovery passwords
TPM information storage
viewing

Group Policy Objects (GPOs)
backups
BitLocker recovery passwords
copying
creating
FGPP
filters–
linking
listing
moving
offline domain joins
overriding prevention–
passwords
removing
restores
Resultant Set of Policy reports–
security templates for–
self-signed certificates
settings

settings reports
starter
subset objects
TPM information storage

Group Policy Preferences (GPPs)
-gt operator
GUIDs (globally unique identifiers)

computer accounts
FGPP
host records

gwmi command

H
hard-disk reports
hard page faults
hardware

CPU utilization
hard-disk
memory usage
network bandwidth

hashes for signatures
health

DCs
critical events from logs
disk space
required services
Service Pack and hotfix status

logs
diagnostic
Kerberos–

help for cmdlets
HelpMessage parameter
hib function
Hibernate mode
high availability in DNS
high watermark values
hisecdc.inf security template
hisecws.inf security template
history of commands
holders, FSMO roles
$Home variable
host (A) records
HOST SPNs
HostName component in SPNs
hotfix status

I
-Identity switch
If statements
IFM (Install From Media) feature
/IgnoreIsLastDcInDomainMismatch switch
/IgnoreIsLastDNSServerForZone switch
Import-GPO cmdlet
Import-Module cmdlet

Active Directory
Group Policy
LocalADModule
Server Manager

Import Policy
importing

Active Directory module
certificates
security template

IMs (Infrastructure Masters)
IN field in resource records
inactive user accounts
inefficient queries
info command
Infrastructure Masters (IMs)
Infrastructure Planning and Design guide
inheritance

ACEs
objects

Install-ADServiceAccount cmdlet
Install From Media (IFM) feature
installing

Active Directory
promoting DCs from backups
promoting servers to RODCs–
promoting servers to writeable domain controllers
removing DCs

Active Directory Management Gateway
Active Directory Web Services
Global Catalogs

instances, WMI
Integrated Scripting Environment (ISE)
inter-site replication
inter-site topology generator (ISTG)
internal public key infrastructure
Interrupts/sec counter

Intersite Messaging service
intra-site replication
Invoke-Command cmdlet
Invoke-WMIMethod cmdlet
IP addresses. See Domain Name System (DNS)
IsActivated method
isDeleted attribute
ISE (Integrated Scripting Environment)
IsEndorsementKeyPairPresent method
/IsLastDcInDomain switch
IsOwned method
IsOwnershipAllowed method
ISTG (inter-site topology generator)
iterative queries

J
joins

limiting
offline domain

K
KCC (Knowledge Consistency Checker)
KDCs (Key Distribution Centers)

description
SPNs
ticket-granting tickets

Kerberos authentication
event logging–
overview
realms

SPNs
tickets time stamps

Key Distribution Centers (KDCs)
description
SPNs
ticket-granting tickets

key packages in BitLocker
-Key parameter
key protectors in BitLocker
keys

PKI
Registry

klist.ee tool
Knowledge Consistency Checker (KCC)

L
lab environments

DNS
moving GPOs from

last logons
lastLogon attribute
lastLogonDate attribute
lastLogonTimeStamp attribute
latency

replication
site link costs

LDAP service
bind authentication
SRV records for

ldifde.exe utility

-le operator
License Agreement screen
-like operator
lingering objects in replication
-LinkEnabled parameter
links

GPOs
site

adding sites to
cost setting
creating
description
GPOs
settings

list_one function
ListSubnets-ADModule.ps
ListSubnets-ADSI.ps

ListBH-ADSI.ps1 script
listing

bridgehead servers
cmdlets
critical events
FSMO role holders
Global Catalogs
GPOs
groups
processes
sites
trusting and trusted domains

ListSites-ADSI.ps1 script

ListSubnets-ADModule.ps1 script
ListSubnets-ADSI.ps1 script
loading Active Directory Module
Local Group Policy Editor

BitLocker recovery passwords
TPM information storage

local groups
/localos switch
locations

computer accounts
logon
user accounts

locked out users listing
-LockoutDuration parameter
-LockoutObservationWindow parameter
lockouts

accounts
TPM

-LockoutThreshold parameter
log levels

Kerberos logs
query statistics

Log Threads Waiting counter
logic in scripts
logical operators

Global Catalogs
UGCs

LogLevel setting
logons

last

locations
smart cards
statistics
UPN suffixes

-LogonWorkstations parameter
logs

critical events in
diagnostic
Kerberos–

long-term secrets
loops in scripts
ls command
LSASS process
-lt operator

M
/makeprimary switch
manage-bde.exe tool
managed service accounts (MSAs)

creating
passwords

managedBy attribute
managers of groups
ManageStaleComputers.ps1 script
Mandatory attribute
masters in zone transfers
-match operator
-MaxPasswordAge parameter
members in groups

adding and removing

comparing
copying
dumping to files
exporting
privileged
viewing

memory usage reports
methods, WMI
MicrosoftDNS_ResourceRecord class
MicrosoftDNS_Statistic class
MicrosoftDNS_Zone class
migration tables
-MigrationTable parameter
-MinPasswordAge parameter
-MinPasswordLength parameter
mixing functional levels
modified date of objects
modified memory pages
Move-ADDirectoryServerOperationsMasterRole cmdlet
Move-ADObject cmdlet
-move switch
MoveDC-ADModule.ps1 script
MoveDC-ADSI.ps1 script
MoveHere function
MoveTo method
moving

database
domain controllers
GPOs
groups

objects
SYSVOL

ms-DS-MachineAccountQuota attribute
MSAs (managed service accounts)

creating
passwords

msDS-AuthenticatedToAccountList attribute
msDS-isGC attribute
msDS-NeverRevealGroup attribute
msDS-Reveal-OnDemandGroup attribute
msDS-RevealedList attribute
multidomain forests–
multiple GPOs, applying
multiple user accounts, changes to

N
name-suffix routing
name suffixes

DNS
UPN

named parameters
names

DCs
DNS zones
object classes
objects
from SIDs

namespaces, WMI
naming contexts (NC)
National Institute of Standards and Technology (NIST)

-ne operator
nested trusts
.NET Framework
netdom command

computer name
trusts

external
name-suffix routing
realm
shortcut
SID History
verifying

netlogon.dns file
netlogon service

description
restarting
SRV records

netsetup.log file
network bandwidth reports
network broadcasts
Network Time Protocol (NTP)
New Action dialog
New-ADComputer cmdlet
New-ADFineGrainedPasswordPolicy cmdlet
New-ADGroup cmdlet

distribution groups
security groups

New-ADObject cmdlet
description
object creation

parameters
subnets

New-ADOrganizationalUnit cmdlet
New-ADServiceAccount cmdlet
New-ADUser cmdlet
New-Alias cmdlet
New-GPLink cmdlet
New-GPO cmdlet
New-GPStarterGPO cmdlet
New-Item cmdlet
New-ItemProperty cmdlet

query statistics
replication
site coverage
SRV records
strict replication consistency

New-Object cmdlet
counters
hard-disk information
LDAP bind authentication
memory
network utilization
NTLM authentication

New-PSDrive cmdlet
New-PSSession cmdlet
New-WBBackupTarget cmdlet
New-WBFileSpec cmdlet
New-WBPolicy cmdlet
NIST (National Institute of Standards and Technology)
NLTEST tool

non-Active Directory data backups
non-Windows Kerberos realms
nontransitive trusts
NOT operators for Global Catalogs
not set attribute bits
-notcontains operator
-notlike operator
-notmatch operator
nouns in cmdlets
NT LAN Manager (NTLM) protocol

authentication
event logging

NTDS.DIT database
disk space
performance
System State backups

NTDS Site Settings object
NTDSA.DLL file
ntdsutil.exe tool

backups
defragmentation
passwords
restores

NTLM (NT LAN Manager) protocol
authentication
event logging

NTP (Network Time Protocol)
$null variable
numerical passwords in BitLocker

O
objects

attributes
clearing
setting

cmdlet overview
creating
creation date
deleting
exporting
finding
modified date
moving
overview
properties

changing
enumerating

quotas
retrieving
SPNs

objectSIDs
offline database defragmentation
offline domain joins (ODJs)
one-liners
one-time database backups
one-way trusts
Open With dialog
OpenRemoteBaseKey method
OpenSubKey method

operating systems
finding computers based on
version

operatingSystem attribute
operatingSystemHotfix attribute
operatingSystemServicePack attribute
operatingSystemVersion attribute
-OperationMasterRole cmdlet
operations masters
operators

comparison
Global Catalogs
UGCs

Optional attribute
options attribute

Global Catalogs
site-link bridging
UGCs

OR operators
Global Catalogs
UGCs

-Order parameter
Organizational Units (OUs)

administrator assignments
creating
deletion prevention
linking GPOs to
moving groups to
moving objects to
overriding GPOs, preventing–

permission delegation
properties
removing
structures
subset objects, GPOs for

organizationalUnit class
-OtherAttributes switch
OUs. See Organizational Units (OUs)
Out-File cmdlet
-OutBuffer parameter
output formatting
output pane
-OutVariable parameter
overriding GPOs, preventing–
owned TPM status
ownership in TPM

P
page faults
Page Faults/sec counter
pages, memory
param keyword
parameters

cmdlets
functions

parameters (continued)
named
positional
scripts

parent classes

parentheses ()
functions
methods

partial attribute sets (PASs)
partners, replication
Password Replication Policy (PRP)
-PasswordHistoryCount parameter
passwords

BitLocker recovery
deleting
reading
storing

blank
cached
changing
compromised RODCs
computer accounts
domain-wide resets
DSRM
without expiration setting
expiring
FGPP
MSAs
replicated
service accounts
TPM
user accounts

paths
default
UNC

PauseConversion method
PCR (Platform Configuration Register)
PDC Emulator FSMOs

overview
in time

performance
CPU utilization
database
domain logon statistics
hard-disk
memory usage
network bandwidth
query statistics

-PermissionLevel parameter
permissions

computer accounts
delegating
GPOs
offline domain joins
SYSVOL

physical memory
pipe character (|)
pipelining cmdlets
PKI (Public Key Infrastructure) certificates
plans, backup
Platform Configuration Register (PCR)
pointer (PTR) records
Port component in SPNs
Position parameter
positional parameters

pound symbols (#) for comments
pre-creating computer accounts
preferred bridgehead servers
Prepared SYSVOL state
preventing

deletion
groups
OUs
user accounts

GPO overrides–
replication

previous commands, retyping
primary DNS servers
PrimaryIPAddress parameter
print_usage function

AddSiteToSiteLink-ADSI.ps
CreateSite-ADModule.ps
CreateSite-ADSI.ps
CreateSiteLink-ADSI.ps
RemoveSite-ADModule.ps1 script
RemoveSite-ADSI.ps

priority
FGPP
SRV records

private keys in PKI
privileged groups membership
processes, listing
% Processor Time counter
production environments, moving GPOs to
$profile command

profiles
creating
scripts

promoting
DCs from backups
servers

to RODCs–
to writeable domain controllers

propagation dampening
properties

computer accounts
console
objects

changing
enumerating

OUs
WMI

Protect Object From Accidental Deletion option
groups
OUs
user accounts

ProtectedFromAccidentalDeletion parameter
ProtectKeyWithExternalKey method
ProtectKeyWithNumericalPassword method
ProtectKeyWithTPM method
/provision switch
PRP (Password Replication Policy)
.ps1 extension
PTR (pointer) records
Public Key Infrastructure (PKI) certificates

public keys in PKI
publically trusted certificate authorities
pwdLastSet attribute

Q
queries

forwarding
policies
statistics

quotas
quotation marks (“) for text strings

R
RDATA field
RDNs (relative distinguished names)
read-only domain controllers (RODCs)

Active Directory installation on DCs
automatic site coverage with
compromised passwords on
promoting servers to–
replicated passwords on

realm trusts
creating
with non-Windows Kerberos realms

rebooting
records, DNS

priority
registering
weight

recovery information for TPM

recovery mode for DCs
recovery passwords

deleting
reading
storing

recursive queries
-Recursive switch
Recycle Bin

enabling
functional level requirements
restores

Redirected SYSVOL state
redirusr.exe utility
reference sets
referencing objects
registering

records
SPNs

Registry
automatic site coverage
diagnostic logs
disk space
GlobalNames zones
GPOs
Kerberos logs
query statistics
replication

automatic
partners
strict consistency

SRV records
System State backups
time synchronization
volume backups

Relationship tab for objects
relative distinguished names (RDNs)
relative identifiers (RIDs)
remote domains, external trusts with
remote procedure call (RPCs)

description
replication

Remote Server Administration Tools (RSAT)
remote sessions
RemoteSigned setting
Remove-ADComputer cmdlet
Remove-ADComputerServiceAccount cmdlet
Remove-ADGroup cmdlet

distribution groups
security groups

Remove-ADGroupMember cmdlet
Remove-ADObject cmdlet

BitLocker recovery passwords
description
sites
subnets

Remove-ADOrganizationalUnit cmdlet
Remove-ADServiceAccount cmdlet
Remove-ADUser cmdlet
Remove-GPO cmdlet
Remove-GPRegistryValue cmdlet

Remove-ItemProperty cmdlet
-remove parameter
Remove-PSDrive cmdlet
remove_site function

RemoveSite-ADModule.ps
RemoveSite-ADSI.ps

Remove-WBBackupTarget cmdlet
Remove-WBBareMetalRecovery cmdlet
Remove-WBFileSpec cmdlet
Remove-WBPolicy cmdlet
Remove-WBSystemState cmdlet
Remove-WBVolume cmdlet
RemoveCustomTime.ps1 script
RemoveSite-ADModule.ps1 script
RemoveSite-ADSI.ps1 script
removing. See deletion and removal
Rename-ADObject cmdlet
renaming DCs
repadmin command
-Replace parameter
replicated passwords
replication

automatic
consistency
DCs
lingering objects
overview
partners
preferred bridgehead servers
remote procedure calls for

state
Replication interval setting
ReplicationDC switch
ReplicationSourcePath switch
replInterval attribute
report_events.ps1 script
reports

GPO settings
hard-disk
memory usage
network bandwidth
RSoP–

/requestodj switch
Require TPM Backup To AD DS option
required services, checking for
reserved memory
Reset-ADServiceAccountPassword cmdlet
resetting

domain-wide passwords
TPM authorization lockout

-ResourceContextPartition parameter
-ResourceContextServer parameter
Restart-Service cmdlet
restarting

AD
DNS service

Restore-ADObject cmdlet
Restore-ADObjectRestores cmdlet
Restore-GPO cmdlet
restores

DC certificates
GPOs
Recycle Bin
scenarios
snapshots
system-state
SYSVOL

Restricted setting
Resultant Set of Policy (RSoP) report–
retyping previous command
Revealed list
reverse lookup zones
-ReversibleEncryptionEnabled parameter
RID Masters
RIDs (relative identifiers)
right arrow key
RODCs. See read-only domain controllers (RODCs)
roles, FSMO. See Flexible Single Master of Operation (FSMO) roles
RootDSE object
routing, name-suffix
RPCs (remote procedure calls)

description
replication

RSAT (Remote Server Administration Tools)
RSoP (Resultant Set of Policy) report–
Run Whether User Is Logged On Or Not option
$RunningProcesses command

S
SACLs (system ACLs)

saturation in site link costs
Save BitLocker recovery information to AD DS for operating system
drives policy
/savefile switch
SayHello.ps1 script
Schedule setting
schedules

backups
replication
scripts

schema, BitLocker
Schema Master FSMOs
Schema NCs
scope of groups
script editor
scripts

backups
creating
functions in
ISE
logic in
parameters
running outside of PowerShell–
schedules
signing
variables in

SDDL (Security Descriptor Definition Language)
Search-ADAccount cmdlet

disabled accounts
expiring passwords

inactive accounts
locked out accounts
multiple users
non-expiring passwords

-SearchScope parameter
secondary DNS servers
Secure Updates on AD-integrated DNS zones
securedc.inf security template
securews.inf security template
security

account lockouts
BitLocker. See BitLocker
passwords
permissions

Security Accounts Manager service
Security Descriptor Definition Language (SDDL)
security groups

creating and deleting
filtering

security identifiers (SIDs)
account names from
history
user accounts

security templates–
securityPrincipal class
seizing FSMO roles
selective authentication
self-signed certificates
self-write ACEs
semicolons (;)

attributes
parameters
UPN suffixes

send-mailmessage cmdlet
Server Manager module
-Server parameter
Server service
servers

bridgehead
listing
settings

DNS
configuration
statistics
zones

Kerberos
promoting

to RODCs–
to writeable domain controllers

Servers container
service accounts
service locator (SRV) records

GlobalNames zones
information in
missing
priority
registering
weight

Service Packs status
service principal names (SPNs)

duplicate
MSAs for
registering

ServiceClass component
servicePrincipalName attribute
Set-Acl cmdlet
Set-ADAccountPassword cmdlet
Set-ADComputer cmdlet
Set-ADDefaultDomainPasswordPolicy cmdlet
Set-ADDomainMode cmdlet
Set-ADForest cmdlet
Set-ADForestMode cmdlet
Set-ADGroup cmdlet
Set-ADObject cmdlet

bridgehead servers
computer join limitations
description
Global Catalogs
object attributes
SPNs
subnets
tombstone lifetime
UGCs

Set-ADOrganizationalUnit cmdlet
Set-ADPassword cmdlet
Set-ADUser cmdlet

attribute changes
logon locations
logon requirements
passwords

user expiration data
user information

Set-AuthenticodeSignature cmdlet
set bits in attributes
Set-ExecutionPolicy cmdlet
Set-GPLink cmdlet
Set-GPPermissions cmdlet
Set-GPPrefRegistryValue cmdlet
Set-GPRegistryValue cmdlet
Set-ItemProperty cmdlet

AD database whitespace
Kerberos logs
replication partners

Set-ItemProperty cmdlet (continued)
restores
volume backups

set_kerb_logging.ps1 script
set_ldap_logging.ps1 script
set_ntds_log.ps1 script
Set-WBPolicy cmdlet
Set-WBSchedule cmdlet
Set-WBVssBackupOptions cmdlet
Set-WBVssCopyOptions cmdlet
Set-WmiObject cmdlet
SetDCTimeSource.ps1 script
SetDCTimeSource-ADSI.ps1 script
SetForestTimeSource.ps1 script
SetForestTimeSource-ADSI.ps1 script
SetInfo function

sites

subnets
SetPhysicalPresenceRequest method
SetTimeDebugLog.ps1 script
Setup security.inf template
SetValue method
shell

variables
working with–

shortcut trusts–
shutdown command
sidHistory attribute
SIDs (security identifiers)

account names from
history
user accounts

signing scripts
single sign-on
site-link bridges
Site list setting
Site property
siteList attribute
siteObject attribute
siteObjectBL attribute
sites

creating
defined
domain controllers

configuration
moving between

global catalog servers

links
adding sites to
cost setting
creating
description
GPOs
settings

listing
removing
subnets

associating
creating
removing
viewing

topology
universal group caching on

Sites container
$sites variable
64-bit version
slaves in zone transfers
smart cards
SMTP replication
snapshots

backups
restores

SOAP-based web services protocols
soft page faults
source DCs in replication
-SourceDomain parameter
SPNs (service principal names)

duplicate
MSAs for
registering

SRV records. See service locator (SRV) records
staging computer accounts
stale computer accounts
standard forwarders
standby memory pages
Start-Service cmdlet
Start SYSVOL state
Start-WBBackup cmdlet
starter GPOs

creating
listing

-StarterGPOGuid parameter
-StarterGPOName parameter
StartService cmdlet
state, replication
Stop-Process cmdlet
Stop-Service cmdlet
StopService method
storing

BitLocker recovery passwords
TPM information

strict replication consistency
strings as variables
subnet masks
subnets, site

associating
creating

listing
removing
viewing

Subnets container
suffixes

DNS name
UPN

synchronization. See time
system ACLs (SACLs)
system commit memory limit
System State

backups
restores

SYSVOL
backups
disk space
moving
permissions
restores

sysvol.inf file

T
TakeOwnership method
-TargetDomain parameter
-TargetName parameter
Task Scheduler service
taskbars, launching PowerShell from
tasks for scripts
TCG (Trusted Computing Group)
TDOs (trusted domain objects)

templates for GPOs–
Test-Path cmdlet
testing cmdlets
text strings as variables
TGS Requests, KDCs
32-bit version
ticket-granting tickets (TGTs)
tickets, Kerberos
time

authoritative sources
debug log
forest time source
overview

time (continued)
removing custom settings
synchronization

ensuring
process

tombstone lifetime
default
description
retrieving and setting

tombstone reanimation process
tombstoned objects
topology of sites
TPM. See Trusted Platform Module (TPM)
transferring FSMO roles–
transitive trusts–
trees
Triggers tab

troubleshooting offline domain joins
$true variable
Trusted Computing Group (TCG)
trusted domain objects (TDOs)
trusted domains

description
listing

Trusted Platform Module (TPM)
information recovery
information storage
ownership
preparing for
status

trusting domains
description
listing

trusts
creating–
domains–
listing
name-suffix routing
nested
overview–
removing
selective authentication
shortcut–
SID history
verifying

two-way trusts
type adapters

types
DNS zones
groups

U
UGC. See universal group caching (UGC)
/unattend switch
UNC (Universal Naming Convention) paths
Undefined setting
universal group caching (UGC)

AD module for
ADSI for
attributes
operation

universal groups
Universal Naming Convention (UNC) paths
Universal Time Coordinates
Unlock-ADAccount cmdlet
Unlock-UserAccounts.ps1 script
unlocking user accounts
unpublished domain names
unresolved DNS queries, forwarding
Unrestricted setting
up-to-dateness vector (UTDV) tables
update sequence numbers (USNs)
upgrading domains
UPN suffixes
% Usage counter
% Usage Peak counter
User Account Control dialog

user accounts
ACLs
creating
default locations
deleting
disabled
enabling and disabling
expiration dates
group membership
inactive
last logons
lockouts
logon requirements
managed service accounts
modifying user information
multiple, changes to
names from SIDs
object quotas
passwords
protecting from deletion
SIDHistory
unlocking
UPN suffixes

User Configuration node
User Rights Assignment policy
Users container
USNs (update sequence numbers)
UTDV (up-to-dateness vector) tables

V

ValueFromPipeline parameter
ValueFromPipelineByPropertyName parameter
values in Registry
variables in scripts
verb-noun pairs
-Verbose parameter
verbs in cmdlets
verifying trust relationships
version, operating system
ViewDNSConfig.ps1 script
viewing

ACLs
DNS server configuration
GPOs–
group information
group membership
replication state
site subnets
TPM recovery information

virtual memory
Virtual Memory Manager
VolumeKeyProtectorIDs
volumes for backups

W
W32Time service
-WarningAction parameter
-WarningVariable parameter
wbadmin.exe tool
weight of SRV records

well-known containers
whenCreated attribute
Where-Object cmdlet
whitespace in AD databases
wildcard routing
Win32_EncryptableVolume class
Windows
Windows 2000 forest functional level
Windows 2000 mixed domain functional level
Windows 2000 native domain functional level
Windows Features dialog
Windows Internet Name Service (WINS)
Windows Management Instrumentation (WMI) interface

basics
BitLocker
cmdlets
DNS servers
filters–

Windows Server 2003 forest functional level
Windows Server 2003 interim domain functional level
Windows Server 2003 interim forest functional level
Windows Server 2008 forest functional level
Windows Server 2008 R
Windows Server 2008 R2 forest functional level
Windows Server Backup
Windows Time service

debug log
description

WindowTitle property
WINS (Windows Internet Name Service)

WMI. See Windows Management Instrumentation (WMI) interface
WMI Query Language (WQL)
WMICLASS type accelerator
working set memory pages
Workstation service
WQL (WMI Query Language)
writeable domain controllers, promoting servers to

X
XML files, exporting objects to
XOR operator

Z
zeroed memory pages
zone transfers
zones, DNS

AD-integrated
creating
GlobalNames
reverse lookup
servers for

	Title Page
	Copyright
	Publisher's Note
	Dedication
	Acknowledgments
	About the Authors
	About the Contributing Authors
	Introduction
	Who Should Read This Book
	What Is Covered in This Book
	How to Contact the Author

	Part I: Administering Service Delivery
	Chapter 1: Using PowerShell with Active Directory
	Understand the Basics of PowerShell
	Understand How PowerShell and Active Directory Work Together

	Chapter 2: Managing Domains and Forests
	Manage AD Domains
	Manage Active Directory Trusts

	Chapter 3: Managing Sites and Replication
	Manage the Site Topology
	Manage Replication

	Chapter 4: Managing Domain Controllers
	Manage How the Active Directory Service Is Provided
	Manage Server-Specific Settings

	Part II: Managing Active Directory Data
	Chapter 5: Configuring Active Directory Dependencies
	Configure DNS
	Manage Domain Time

	Chapter 6: Administering User and Group Accounts
	Manage User Accounts
	Manage Groups

	Chapter 7: Managing Computer Accounts, Objects, and Organizational Units
	Manage Objects
	Manage Computer Accounts
	Manage Organizational Units

	Chapter 8: Managing Group Policies
	Manage Group Policy Settings
	Manage Group Policy Application

	Part III: Protecting Your Investment in Active Directory
	Chapter 9: Automating Active Directory Security
	Secure the Forest
	Manage BitLocker

	Chapter 10: Backing Up Data and Recovering from Disasters
	Back Up Active Directory Data
	Restore Data

	Chapter 11: Monitoring Health and Performance
	Keep Active Directory Healthy
	Track Domain Controller Performance

	Index

